

March 27, 2023

Ron Stenson, Senior Project Officer Uranium Mines and Mills Division 280 Slater Street P.O. Box 1046, Station B Ottawa, Ontario K1P 5S9

Dear Mr. Stenson:

Re: Serpent River Watershed Monitoring Program – Year Three of Cycle 5

Denison Mines Inc. and Rio Algom Limited are pleased to submit a copy of the Serpent River Watershed Monitoring Program Year Three of Cycle 5 Annual Water Quality Report for 2022. If you have any questions or comments, please do not hesitate to contact the undersigned.

Yours very truly,

Denison Mines Inc. Rio Algom Limited

SBenson

Sarah Benson Environmental and Regulatory Manager Holly Heffner Principal Licencing and Permitting

cc: Distribution List

Canadian Nuclear Safety Commission Ron Stenson, Senior Project Officer Uranium Mines and Mills Division Ron.Stenson@cnsc-ccsn.gc.ca Tel: 613-995-2624 cc: ummd-dmucu@cnsc-ccsn.gc.ca Mailing address: Canadian Nuclear Safety Commission 280 Slater Street, P.O. Box 1046, Station B Ottawa, ON K1P 5S9	Ministry of Energy, Northern Development and Mines Marc Stewart, Senior Manager Mine Rehabilitation Section Ministry of Mines, Mineral Development Branch Marc.Stewart@Ontario.ca Tel: 705-561-6042 Email: Ministry of Energy, Northern Development and Mines 435 James Street South, Suite B002 Thunder Bay, ON P7E 6S7
Environment and Climate Change Canada Catalin Obreja Physical Science Officer, Environmental Stewardship Branch catalin.obreja@canada.ca Tel: 416-739-5973 Mailing address: Environment Canada, Environmental Protection Operations 4905 Dufferin Street, 2nd Floor, Office 2S316 Toronto, Ontario M3H 5T4	Environment and Climate Change Canada Duck Kim Physical Science Officer, Environmental Stewardship Branch duck.kim@canada.ca Tel: 416-739-5919 Mailing address: Environment Canada, Environmental Protection Operations 4905 Dufferin Street, 2 nd Floor, Office 2S311 Toronto, Ontario M3H 5T4
Ministry of the Environment, Conservation and Parks Renee Belanger, Senior Environmental Officer, Sault Ste Marie Area Office renee.belanger@ontario.ca Tel: 705-622-2053 Mailing address: Ministry of the Environment, Conservation and Parks 70 Foster Drive, Suite 110 Sault Ste Marie, ON P6A 6V4	Ministry of the Environment, Conservation and Parks Ed Snucins Surface Water Specialist, Northern Region ed.snucins@ontario.ca Tel: 705-698-5546 Mailing address: Ministry of the Environment, Conservation and Parks 199 Larch Street, Suite 1201 Sudbury, Ontario P3E 5P9
Ministry of Natural Resources and Forestry Jim Trottier Management Biologist, Blind River Field Office jim.trottier@ontario.ca Tel: 705-356-3018 Mailing address: Ministry of Natural Resources and Forestry 62 Queen Avenue, P.O. Box 190 Blind River, ON POR 1B0	Ministry of Natural Resources and Forestry Meredith Agliani IRM Technical Specialist, Sault Ste Marie District meredith.agliani@ontario.ca Tel: 705-943-9837 Mailing address: Ministry of Natural Resources and Forestry 64 Church Street, Sault Ste. Marie, ON P6A 3H3
Ministry of Labour, Training and Skills Development Clayton Fucile Occupational Health and Safety Inspector clayton.fucile@ontario.ca Mailing address: Ministry of Labour, Training and Skills Development Ontario Government Complex D Wing 5520 Highway 101 East, P.O. Bag 3050 South Porcupine ON P0N 1H0	Ministry of Labour, Training and Skills Development Harsim Kalsi Provinical Coordinator, Mining Health and Safety Program Harsim.kalsi@ontario.ca Tel: 705-564-4160 Mailing Address: Ministry of Labour, Training and Skills Development Ontario Government Bldg 159 Cedar Street, Sudbury, ON P3E 6A5

2022 SRWMP Annual Water Quality Report Rio Algom Limited and Denison Mines Inc.

Additional Distribution 2023

City of Elliot Lake

Dan Gagnon

City of Elliot Lake CAO

d.gagnon@city.elliotlake.on.ca

Tel: 705-848-2287 Mailing address: City of Elliot Lake 45 Hillside Drive North Elliot Lake, ON P5A 1X5 **Elliot Lake Public Library**

Mailing address:

Elliot Lake Public Library

Pearson Plaza

40 Hillside Drive South Elliot Lake, ON P5A 1M7

Serpent River First Nation

Chief Brent Bissaillion

<u>chief@serpentriverfn.com</u> Tel: 705-844-2418
cc. Lands and Resources Coordinator

lands.resources@serpentriverfn.com

Mailing address:

Serpent River First Nation 195 Village Road, P.O. Box 14

Cutler, ON P0P 1B0

Township of the North Shore

Mayor Tony Moor

tmoor@townshipofthenorthshore.ca

Tel: 705-849-2213 Mailing address:

Township of the North Shore 1385 Hwy 17, P.O. Box 108 Algoma Mills, ON POR 1A0

Town of Spanish

Pam Lortie

CAO/Clerk-Treasurer

pamlortie@townofspanish.com

Tel: 705-844-2300 Mailing address: Town of Spanish

8 Trunk Road, P.O. Box 70 Spanish, ON P0P 2A0

Mississauga First Nation

Chief Reg Niganobe Cc.Keith Sayers

Land and Natural Resources Manager

keith@mississaugi.com

Tel: 705-356-1621 Mailing address:

Mississauga First Nation 64 Park Road, P.O. Box 1299 Blind River, ON POR 1B0

Cc: Peyton Pitawanakwat Environmental

Tech peyton@mississaugi.com

Mailing address:

Mississauga First Nation 64 Park Road, P.O. Box 1299 Blind River, ON POR 1B0

Sagamok Anishnawbek First Nation

Chief Agnus Toulouse Cc: Samantha Keysis

Director, Lands, Resources and Environment

keysis samantha@sagamok.ca

Tel: 705-865-1134 Mailings address:

Sagamok Anishnawbek First Nation

89 Rive Road, P.O. Box 610 Massey, ON P0P 1P0

BHP (Rio Algom Ltd.)

Kate Sommerville

kate.sommerville@bhp.com

Tel: 520-404-5513

Serpent River Watershed Monitoring Program 2022 Annual Water Quality Report

Submitted to the Canadian Nuclear Safety Commission March 31, 2023

Table of Contents

List	of Figure	9S	iii
List	of Table	s	iii
List	of Apper	ndices	iii
1	Introd	duction	4
2	Meth	odology	5
	2.1	2022 Program Requirements	5
	2.2	2022 Program Conformance	8
	2.3	Field Measurements	8
	2.4	Data Quality Objectives	8
	2.5	Changes in Analytical Methods	11
	2.6	Reporting of Method Detection Limits	11
	2.7	Data Screening and Assessment Conventions	11
3	Resu	lts	11
	3.1	Data Quality Results and Assessment	11
	3.2	2022 Annual Average Location Results Summary	14
	3.3	Five-Year Annual Average Trends at Key Locations 2017-2021	15
4	Discu	ussion	18
	4.1	Response Monitoring	18
	4.2	SRWMP Performance Monitoring Program Changes	18
	4.3	Changes to Location Classification and Frequency	19
	4.4	Representative Public Radiation Dose Estimation	19
ргг	EDENIC	TO.	20

ICT				

Figure 2.1	Serpent River Watershed Water Quality Monitoring Locations7
Figure 3.1.a.	Annual Average Sulphate Concentrations at SR-01, SR-06, SR-08, and DS-18, 2018-202217
Figure 3.1.b.	Annual Average Radium Concentrations at SR-01, SR-06, SR-08, and DS-18, 2018-202217
Figure 3.1.c.	Annual Average Uranium Concentrations at SR-01, SR-06, SR-08, and DS-18, 2018-2022
LIST OF TAI	BLES
Table 2.1	2022 SRWMP Water Quality Monitoring Requirements6
Table 2.3	SRWMP Field Equipment Models and Accuracy8
Table 2.4.a.	2022 SRWMP Field Data Quality Objectives9
Table 2.4.b.	2022 SRWMP Laboratory Methods and Data Quality Objectives10
Table 3.1	2022 SRWMP Field Quality Control Results Summary13
Table 3.2	2022 SRWMP Location Annual Average Results Summary16

LIST OF APPENDICES

APPENDIX I	Performance Monitoring Changes 1	1999 - 2021,	Evolution of Programs

APPENDIX II Flagged Data Results

APPENDIX III Laboratory QA/QC Results

APPENDIX IV Field QA/QC Results

APPENDIX V Location Results

1 Introduction

As part of the closure and decommissioning process, Rio Algom Limited (RAL) and Denison Mines Inc. (DMI) developed a focused and integrated performance monitoring network for legacy sites within the Serpent River Watershed (SRW). The comprehensive monitoring and management strategy clearly defined and delineated the purpose for all monitoring activities through three integrated programs; the Tailings Management Area (TMA) Operational Monitoring Program (TOMP), the Source Area Monitoring Program (SAMP), and the Serpent River Watershed Monitoring Program (SRWMP) (Minnow Environmental Inc. (Minnow), 2019). An integrated assessment of the results from the monitoring programs is prepared every five years in a *State of the Environment Report* (SOE) in compliance with license requirements and in accordance with Canadian Standards Association (CSA) standard N288.4-10 (2010). The regulatory review of the most recent SOE (Cycle 5, inclusive of data from January 1, 2015 – December 31, 2019) was submitted to the Joint Regulatory Review Group (JRG)¹ on March 31, 2021.

The SRWMP was initiated in 1999 as a joint initiative of RAL and DMI with the objectives of evaluating the effectiveness of mine decommissioning plans and assessing long-term environmental water quality trends in the watershed (Beak International Incorporated (Beak, 1999). Evolution of the program, key outcomes, program modification decisions, and associated references are summarized in Appendix I. In 2022, the SRWMP followed the 2020 program modification recommendations described in the *Cycle 5 Study Design for the SRWMP, SAMP and TOMP* (Cycle 5 Study Design, (Minnow, 2019).

The SRWMP Annual Water Quality Report for 2022 provides water quality data from watershed monitoring locations from January 1, 2022, through December 31, 2022. This report should be read in conjunction with the Annual Operating Care and Maintenance (OCM) reports, prepared independently by each company, which provides a summary of operational activities completed at the facilities as well as presents data collected as required by the SAMP and TOMP (RAL, 2023; DMI, 2023). The objective of the SRWMP annual data review is to identify anomalous data and evaluate short-term data trends at key locations. Step changes and anomalies are identified in this report by reviewing and compiling the last five years of annual average data for all SRWMP monitoring locations, and reviewing the information for any noticeable changes. Significant changes and unusual results are investigated in accordance with the Water Quality Assessment and Response Plan, which is found in Appendix A of the most recent SOE Report (Minnow, 2021).

The SRWMP Annual Water Quality Report for 2022 also provides a summary of the data quality management program and water quality results for the period January 1, 2022, through December 31, 2022.

As part of the 2015 SOE review, the Canadian Nuclear Safety Commission (CNSC) instructed RAL and DMI to include annual reporting of a representative radiation dose to the public associated with their closed uranium mine sites in the SRW. Details on this topic are discussed in Section 4.4 of this report.

¹ The JRG is a multi-stakeholder committee composed of representatives from the Canadian Nuclear Safety Commission (CNSC), Department of Fisheries and Oceans (DFO), Environment and Climate Change Canada (ECCC), Ontario Ministry of the Environment, Conservation and Parks (MECP), Ontario Ministry of Natural Resources and Forestry (MNRF), Ontario Ministry of Labour (MOL) and the Ontario Ministry of Northern Development and Mines (MNDM). The JRG continues to participate in the programs through reviewing study design reports and interpretive reports for the TOMP, the SAMP, and the SRWMP.

2 METHODOLOGY

2.1 2022 Program Requirements

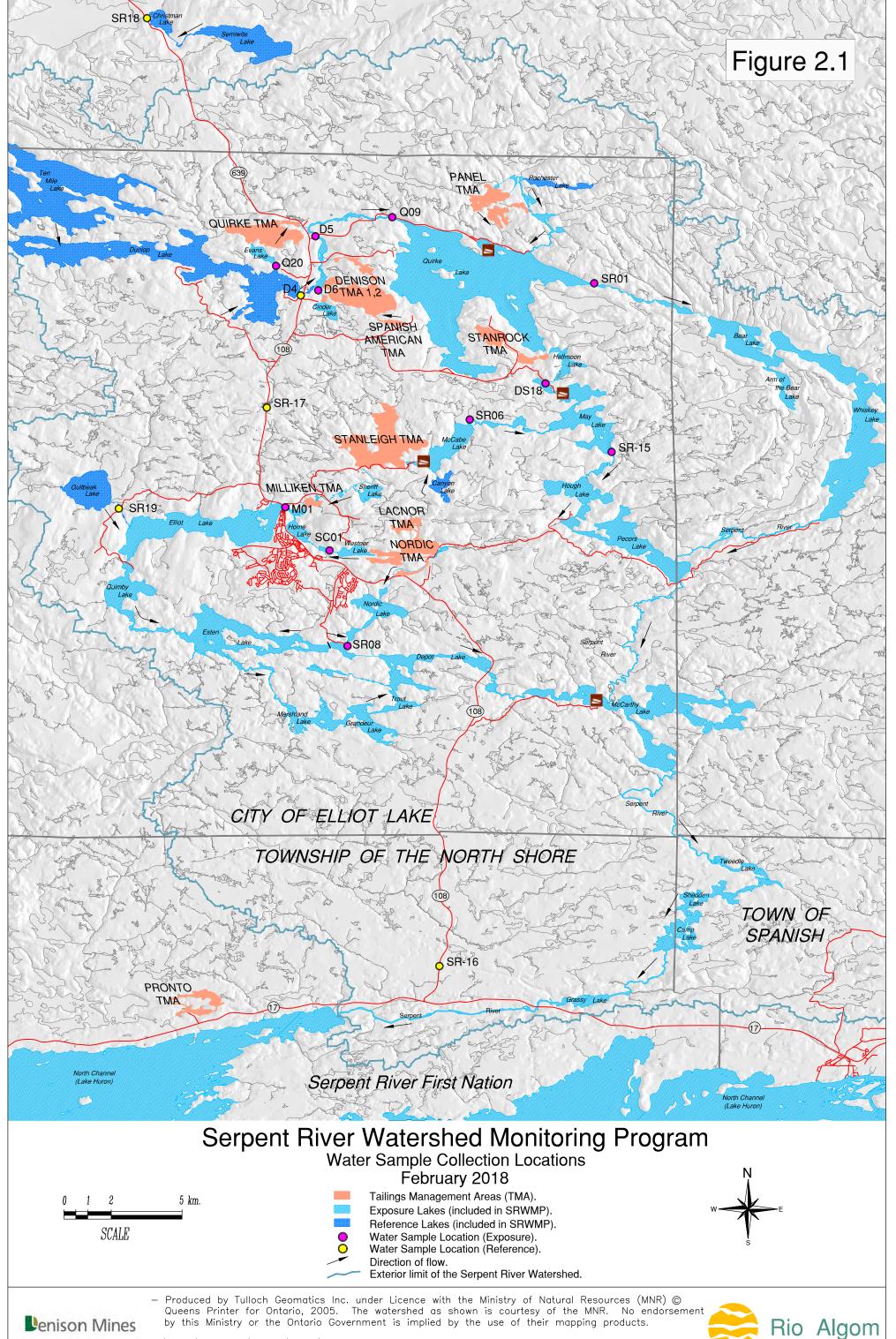

The 2022 SRWMP followed program requirements (sampling locations, frequencies, parameters, and analytical protocols) as approved in the Cycle 5 Study Design (Minnow, 2019). Table 2.1 provides a brief description of each monitoring location, the frequency of monitoring and parameters monitored. Figure 2.1 provides a map of the stations included in the water quality monitoring program.

Table 2.1 2022 SRWMP Water Quality Monitoring Requirements

Sampling Station	Location / Description	Sample Type	Purpose	Flow (L/s)	Field pH	Sulphate (mg/L)	Radium-226 (Bq/L total)	Urnaium (mg/L)	Barium (mg/L)	Iron (mg/L)	Manganese (mg/L)	Hardness³ (mg/L)	DOC ⁴ (mg/L)
SR-16 ²	Fox Creek at Highway 108	Wetland/stream reference	SRWMP/SAMP		4	4	4	4	4	4	4	4	4
SR-17 ²	Unnamed Creek Drain Lake 3 @ Hwy 108	Wetland/stream reference	SRWMP/SAMP		4	4	4	4	4	4	4	4	4
SR-18	Outlet of Jim Christ Lake	Lake reference	SRWMP		2	2	2	2	2	2	2	2	2
SR-19	Inlet to Elliot Lake	Lake reference	SRWMP		4	4	4	4	4	4	4	2	2
SR-08	Nordic Lk Outlet	far field	SRWMP/MECP ⁵		4	4	4	4	4			4	4
SR-15	May Lake Outlet	far field	SRWMP	2	2	2	2	2	2	2		2	2
M-01 ¹	Sherriff Ck @ Hwy 108	near field	SRWMP		4	4	4	4	4	4		4	4
Q-09	Serpent River Below Q Effluent	near field	SRWMP	4	4	4	4	4	4			4	4
Q-20	Evans Lk Outlet to Dunlop Lk	near field	SRWMP	1	1	1	1	1	1			1	1
SC-01	Westner Lk Outlet	near field	SRWMP/MECP ⁵		1	1	1	1	1	1		1	1
SR-06	McCabe Lk Outlet	near field	SRWMP	2	2	2	2	2	2			2	2
FBR5	Field Blank Rio	QA/QC	SRWMP		2	2	2	2	2	2		2	2
BSR5	Blind Sample Rio	QA/QC	SRWMP		2	2	2	2	2	2		2	2
Rio Algo	om total excluding field blanks & blind sar	mples		9	32	32	32	32	32	21	14	30	30
D-4	Dunlop Lk Outlet	Lake reference	SRWMP		2	2	2	2	2	2	2	2	2
D-5	Serpent R. between Q and D	near field	SRWMP	4	4	4	4	4	4			4	4
D-6 ¹	Cinder Lk Outlet	near field	SRWMP	4	4	4	4	4	4	4	4	4	4
DS-18	Halfmoon Lk Outlet	near field	SRWMP/MECP	4	4	4	4	4	4	4		4	4
SR-01	Quirke Lk Outlet	far field	SRWMP		1	1	1	1	1			1	1
FBD2	Field Blank Denison	QA/QC	SRWMP		2	2	2	2	2	2	2	2	2
BSD2	Blind Sample Denison	QA/QC	SRWMP		2	2	2	2	2	2	2	2	2
Denison	total excluding field blanks & blind samp	oles		12	15	15	15	15	15	10	6	15	15
Total QA	/QC samples			0	8	8	8	8	8	8	4	8	8
TOTAL S	SAMPLES			21	47	47	47	47	47	31	20	45	45
QA/QC F	Fraction of Total			0%	17%	17%	17%	17%	17%	26%	20%	18%	18%

Notes:

- 1. Field QA-QC designated stations.
- 2. Wetland reference locations for the SRWMP and SAMP Cycle 5 Design Study (Minnow 2019).
- 3. Hardness is an ancillary parameter used to assess manganese and sulphate as both parameters are hardness dependant (Ambient Water Quality Guidelines) (BC ENV 2019)
- 4. DOC was added as a qualifier for iron as per the proposed Federal Water Quality Guideline (ECCC, 2019).
- 5. Ontario Ministry of the Environment, Conservation and Parks (MECP) required sampling as per Nordic Environmental Compliance Approval, NUMBER: 0001118756. rev .01, Sept, 2020.

Rio Algom

2.2 2022 Program Conformance

All Cycle 5 sampling requirements were met during the 2022 reporting period, with the exception of two flow measurements. Although all samples were collected, flow could not be measured at D-6 and DS-18 in February due to thick ice build-up across the channels.

In addition, the November 23, 2022, results for barium, dissolved organic carbon (DOC) and iron at reference lake station SR-18 (Jim Christ Lake), came in at historic highs and were confirmed by repeat analysis. Barium and DOC results were 2 to 3 times higher than expected values and iron results were almost an order of magnitude higher than expected. All other parameters remained within expected values. The barium, DOC and iron results at SR-18 appeared erroneous and were deemed as outliers and removed from the data set.

Hardness continues to be monitored as an ancillary parameter at all SRWMP stations. According to the Approved Water Quality Guidelines for Aquatic Life, Wildlife & Agriculture from the British Columbia Ministry of Environment & Climate Change Strategy (BC ENV), manganese and sulphate guidelines are hardness dependent (BC ENV, 2020). DOC was added to the monitoring program at the recommendation of the Ontario Ministry of the Environment, Conservation, and Parks (MECP). DOC data is provided in Appendix V for 2022, however, it has not been used for iron assessment in this report, as the upper level of background for iron is higher than federal guidelines. Changes to the program are discussed in further detail in Section 4.2.

2.3 Field Measurements

Field measurement requirements and protocols for the 2022 SRWMP are presented in detail in the *Cycle 5 Study Design* (Table 6.2, Minnow, 2019). Field Staff have been thoroughly trained and have reviewed procedures associated with the proper calibration and use of field equipment for the measurement of field parameters. The models and accuracy for equipment used in measuring SRWMP field parameters are provided in Table 2.3.

Table 2.3 SRWMP Field Equipment Models and Accuracy

Parameter	Meter	Accuracy	Unit
pН	YSI Pro 10	+/- 0.02	pH units
flow	Global Flow Probe	0.1	feet per second

2.4 Data Quality Objectives

Field and laboratory data quality objectives (DQOs) for the 2022 SRWMP are presented in detail in the *Cycle 5 Study Design* (Minnow, 2019). Table 2.4.a. provides a summary of field DQOs and Table 2.4.b. provides a summary of laboratory methods, detection limits and DQOs. Data quality assessment results are provided in Section 3.

Table 2.4.a. 2022 SRWMP Field Data Quality Objectives

		Assessme	nt Criteria ¹		Data Quality Objectives ²						
Parameter	Units	PWQO	Background	Detection Limit	Minimum ³	Field Blank Criteria	Field Precision				
		BCMOE		Lillit	Detectable Difference	Ontena					
Field Parameters ³			-								
Flow	L/s	-	-	method	method	-	30%				
pН				0.1	0.01 or 0.02	-	10%				
Lake Stations		6.5	-								
Wetland/Streams		-	5.3								
Laboratory Paramete	ers										
Barium	mg/L	1.0	-	0.005	-	0.01	20%				
Iron	mg/L	-	-		-						
Lake Stations		-	0.76	0.02	-	0.04	20%				
Wetland/Streams		-	2.49	0.02	-	0.04	20%				
Manganese ⁴	mg/L	0.841	-	0.002	-	0.004	20%				
Radium (total)	Bq/L	0.469 ⁵	_	0.005	-	0.01	20%				
Sulphate 4	mg/L	128-429 ⁴	-	0.1	-	0.2	20%				
Uranium	mg/L	0.015	-	0.0005	-	0.001	20%				
Hardness	mg/L	-	-	0.5	-	1.0	20%				

Notes:

^{1.} Table S.1, Apprendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

^{2.} Table 6.2 Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

^{3.} Minimum detectable difference as identified in instrument manual

^{4.} Table S.2, Apprendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

⁵ The dose-base site-specific benchmark for radium is selected, as per CNSC request and is detailed in Section 5.2.5.2, of the Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

Table 2.4.b. 2022 SRWMP Laboratory Methods and Data Quality Objectives

		Assessme	nt Criteria ¹		Laboratory Data Quality Objectives ²							
Parameter	Units	PWQO BCMOE	Background	Method	Detection Limit	Laboratory Blank	Precision	Spikes	Accuracy (CRM)			
Barium	mg/L	1.0	_	ICP-MS	0.005	0.01	10%	20%	20%			
Iron	mg/L	-		ICP-OES					000000000000000000000000000000000000000			
Lake Stations			0.76		0.02	0.04	10%	20%	20%			
Wetland/Streams			2.49		0.02	0.04	10%	20%	20%			
Manganese ³	mg/L	0.841	-	ICP-MS	0.002	0.004	10%	20%	20%			
Radium (total)	Bq/L	0.469 ⁴	-	Alpha Spectroscopy	0.005	0.01	20%	20%	_			
Sulphate ³	mg/L	128-429	-	lon Chromatography	0.1	0.2	10%	20%	20%			
Uranium	mg/L	0.015	-	ICP-MS	0.0005	0.001	10%	20%	20%			
Hardness	mg/L	-	-	ICP-OES	0.5	0.1	10%	-	-			

Notes:

- 1. Table S.1, Apprendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)
- 2. Table 6.2 Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)
- 3. Table S.2, Apprendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)
- 4. The dose-base site-specific benchmark for radium is selected, as per CNSC request and is detailed in Section 5.2.5.2, of the Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

2.5 Changes in Analytical Methods

There were no changes in analytical methods in 2022.

2.6 Reporting of Method Detection Limits

Program method detection limits (MDLs) are presented in Tables 2.4.a. and 2.4.b.

2.7 Data Screening and Assessment Conventions

Data validation was conducted on SRWMP water quality data throughout the year. The assessment screening process flags all data points outside a rolling minimum 12 value mean \pm 3 standard deviations.

Flagged data and short-term response plans for the SRWMP are reported quarterly to regulatory agencies as part of the water quality report. Data validation of "flagged data" for the year 2022 can be found in Appendix II.

Annual water quality reporting is designed to be concise and focused on the presentation of data in a standardized format with limited interpretation, as per Section 14.2 of the Implementation Document (Beak, 1999c). Data validation ensures prompt response to upset conditions or unusual results, as documented in *Data Validation Procedures* in conjunction with *Water Quality Assessment and Response Plan*, which is included in Appendix B of the SOE (Minnow, 2021). Assessment criteria as outlined in Table 2.4.a. and 2.4.b. of this report, are standardized to benchmarks selected, rationalized and presented in *Appendix S, Tables S.1 and S.2 of the Cycle 5 SOE* (Minnow, 2021).

Approved program modifications implemented in January of 2020 focused water quality monitoring on lakes located immediately downstream of the decommissioned TMAs. An indepth and detailed statistical evaluation of water quality trends is included in the SOE produced every five years (Minnow 2009, 2011, 2017, 2021).

A SRWMP location summary of all annual average concentrations is reviewed and compared to assessment criteria in this report in Table 3.2. In addition, the most recent five-year annual concentrations of mine indicator parameters at key downstream locations are reviewed in this report in Figures 3.1.a to 3.1.c.

3 RESULTS

3.1 Data Quality Results and Assessment

Detailed laboratory quality assurance and quality control (QA/QC) results are provided in Appendix III, and detailed field QA/QC results are provided in Appendix IV. Field quality control results are summarized in Table 3.1. Data quality results and assessments are provided in the following sections.

3.1.1 Laboratory Quality Assurance and Quality Control

In 2022, all analytical requirements for the SRWMP were contracted to laboratories with Canadian Association for Laboratory Accreditation Inc. (CALA) accreditations. (Appendix III).

2022 SRWMP Annual Water Quality Report

Detailed laboratory QA/QC results are provided in Appendix III. The 10% objective for QA/QC was met. SGS performed 41,247 analyses with 14,055 QC checks, which represents 34.4% QC for sample analysis (Appendix III).

3.1.2 Quality Assurance and Quality Control Resolution of Key Issues

There were no major issues with laboratory analysis requiring resolution in 2022 (Appendix III).

3.1.3 Analytical Blank Performance

Laboratory quality control results confirm that blank data quality objectives were met for all parameters in all samples (Appendix III).

3.1.4 Analytical Duplicate Performance

Laboratory quality control results confirm that duplicate data quality objectives of 20% for radium and 10% for all other remaining parameters were achieved in all samples (Appendix III).

3.1.5 Analytical Laboratory Spike Performance

Laboratory quality control results confirm that the spike data quality objective of 20% was achieved for all parameters in all samples (Appendix III).

3.1.6 Analytical Certified Reference Material Performance

Laboratory quality control results confirm that the certified reference material (CRM) data quality objective of 20% accuracy was achieved for all parameters in all samples in 2022 (Appendix III).

3.1.7 Field Blank Performance

Field Blank water quality control results confirm that SRWMP field blank data quality objectives (DQO's) were achieved in 2022 (Appendix IV).

3.1.8 Field Precision Performance

The radium-226 field precision objective of 20% was slightly exceeded in 1 of 4 samples, at 23.5%. The exceedance occurred at low concentrations (< 0.020 Bq/L), which can introduce a lack in precision between samples, but could also indicate some environmental variability at the time of sampling. However, all values are representative of typical values observed at these locations; and therefore, the exceedances do not affect interpretation of radium-226 water quality data. The annual average percent difference was well below the DQO at 7.3%. The iron field precision objective of 20% was also slightly exceeded in 1 of 4 samples at 21.1%; however, all results were within expected values and do not impact interpretation of water quality. The annual average percent difference was well below the DQO at 12.2%. All other field precision quality control results confirm that SRWMP field precision DQO's were achieved in 2022 (Appendix IV).

Table 3.1 2022 SRWMP Field Quality Control Results Summary

QA/QC	рН	SO4	Ra (T)	U	Ва	DOC	Fe	Mn	Hardness
		(mg/L)	(Bq/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MDL ¹	-	0.1	0.005	0.0005	0.005	0.5	0.02	0.002	0.5
Field Blank Statistics									
Count	-	4	4	4	4	4	4	4	4
Average	-	<0.1	< 0.005	<0.0005	< 0.005	<0.5	< 0.02	0.003	<0.5
Max	-	<0.1	< 0.005	< 0.0005	< 0.005	<0.5	< 0.02	0.004	<0.5
Min	-	<0.1	< 0.005	< 0.0005	< 0.005	<0.5	< 0.02	0.002	<0.5
Field Blank Exceedances									
Criteria ¹	-	0.2	0.01	0.001	0.01	1.0	0.04	0.004	1.0
Exceedance	0	0	0	0	0	0	0	0	0
Field Precision Statistics									
Count	4	4	4	4	4	4	4	4	4
Average	0.8%	0.3%	7.3%	2.9%	2.0%	2.6%	12.2%	3.2%	1.1%
Max	1.6%	1.3%	23.5%	6.5%	3.4%	5.4%	21.1%	7.0%	2.5%
Min	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	1.6%	0.3%
Field Precision Exceedances									
Criteria ¹	20%	20%	20%	20%	20%	20%	20%	20%	20%
Exceedance	0	0	1	0	0	0	1	0	0

Notes

¹ Data Quality Objectives taken from Table 6.2 af the Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019) Bold indicates an exceedance in the Data Quality Objectives (DQO's)

3.2 2022 Annual Average Location Results Summary

Annual average concentrations of SRWMP parameters for 2022 in comparison to the Cycle 5 SOE (Minnow, 2021) receiving environment assessment criteria are provided in Table 3.2. Annual detailed results and five-year summaries of annual average concentrations in comparison to assessment criteria are provided in Appendix V.

Water quality throughout the Serpent River Watershed continues to meet and remain well below the assessment criteria established for the protection of aquatic life. Annual average concentrations for all parameters in 2022 were less than the assessment criteria at all locations and pH was within the assessment range (Appendix V).

The annual average manganese concentration at D-6, appears elevated compared to other SRWMP locations at 0.101 mg/L; however, considering the annual average water hardness of 54.0 mg/L, the manganese average concentration is well below the BC ENV chronic toxicity guideline of 0.8 mg/L for the protection of aquatic biota. In addition, individual hardness results in 2022 ranged from 18.7 mg/L to 58.0 mg/L and individual manganese results ranged from 0.056 mg/L to 0.173 mg/L (Appendix V), demonstrating that all manganese concentrations remained well below the acute protection guideline of 1.1 mg/L (BC ENV, 2020). Furthermore, concentrations at D-6 have been decreasing over the last five years and no impact was observed downstream at D-5 where the manganese annual average concentration was 0.032 mg/L.

The annual average iron concentration at M-01 (Sherriff Creek outlet @ HWY 108) appears elevated compared to other SRWMP locations at 0.95 mg/L. However, it remained below the assessment criteria established for wetland stations (2.49 mg/L, Table 2.4.a) and consistent with reference wetland stations SR-16 and SR-17 (Table 3.2).

Annual average barium concentrations at SR-06 (McCabe Lake Outlet) and further downstream at SR-15 (May Lake Outlet) have continued to decrease since 2018 (Appendix V) with average concentrations in 2022 at 0.124 mg/L and 0.065 mg/L, respectively (Table 3.2). The decrease is likely associated with the introduction of pre-formed barite at the upstream Stanleigh Effluent Treatment Plant (ETP) in 2018. Prior to 2019, barium concentrations at both SR-06 and SR-15 indicated an increasing trend, which was likely due to the increased barium chloride addition rates required for radium-226 removal upstream at CL-06. The efficacy of the change to pre-formed barite indicates an improvement in radium-226 removal and a reduction of residual barium in the CL-06 effluent and subsequently downstream at SR-06 and SR-15. Details of the preformed barite treatment method and CL-06 data can be found in the 2018, 2019 and 2020 *RAL Annual OCM Reports* (RAL, 2019, 2020, 2021). Although barium concentrations still appear elevated compared to other SRWMP stations, they are well below the assessment criterion (1.0 mg/L) and well below levels considered to be toxic to the aquatic environment (>8.0 mg/L; WHO 2001).

The annual average sulphate concentration at SR-08 (Nordic Lake Outlet) is elevated (135.0 mg/l) compared to other SRWMP stations. However, the sulphate benchmark for SRWMP sites is dependent on specific water hardness at the sample location. Toxicity studies demonstrated amelioration of toxicity with increasing water hardness (BC ENV, 2020). and based on an annual average hardness of 161.3 mg/L in 2022 at SR-08, the resulting criterion for sulphate is 309 mg/L. In 2022, all results at SR-08 fell within BC ENV guidelines for the protection of aquatic life (BC ENV, 2020). Sulphate assessment criteria for individual stations and detailed results are included in Appendix V, as well as *Table S-1*, *Appendix S*, of the *Cycle 5 SOE for the SRWMP*, *SAMP*, and *TOMP* (Minnow, 2021).

3.3 Five-Year Annual Average Trends at Key Locations 2018-2022

Figures 3.1.a to 3.1.c show five-year trends of annual average concentrations for the minerelated parameters sulphate, radium-226, and uranium at the following key locations:

- SR-01, Quirke Lake Outlet;
- SR-06, McCabe Lake Outlet;
- SR-08, Nordic Lake Outlet;
- DS-18, Halfmoon Lake Outlet.

Based on a review of five years of data, annual sulphate concentrations at all key lake outlets are well below the assessment criterion of between 128-309 mg/L as established for each station. Annual concentrations have remained stable at all locations over the past five years (Figure 3.1.a), with the exception of SR-08 (Nordic Lake Outlet) where a slight increase was observed in 2021; however, all results remained well below the assessment criterion of 309 mg/L. This data can be found in *the SRWMP Annual Water Quality Report 2021* (RAL, DMI, 2022).

With the exception of DS-18, annual average radium-226 concentrations are much lower than the assessment criterion of 0.469 Bq/L (Figure 3.1.b). At station DS-18, annual average radium concentrations appear slightly elevated compared to other annual average radium-226 concentrations in the last five years (Appendix V). This may be indicative of flushing through the historic tailings spill upstream in the Halfmoon wetland area; however, all DS-18 results in the last five years remained well below the assessment criterion of 0.469 Bq/L (ranging from 0.058 Bq/L to 0.221 Bq/L) and well below the Health Canada (2009) drinking water quality standard of 0.5 Bq/L.

Annual average radium-226 concentrations at SR-06 have continued to decrease since 2019 (Appendix V). This is likely associated with an approved alteration in the treatment process for radium-226 removal upstream at the Stanleigh ETP (RAL, 2019, 2020, 2021).

Based on review of the five-year annual average data, all radium-226 concentrations have consistently remained below the assessment criterion of 0.469 mg/L and well below Health Canada (2009) drinking water quality standard of 0.5 Bq/L (Figure 3.1.b).

Annual average uranium concentrations at all four key lake locations appear to be relatively stable and were more than an order of magnitude below the assessment criteria of 0.0150 mg/L (Figure 3.1.c).

Table 3.2 2022 SRWMP Location Annual Average Results Summary

Parameters			рН	SO4 ⁵	DOC	Ra(T)	U	Ва	Fe	Mn ⁵	Hardness
				(mg/L)	(mg/L)	(Bq/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	mg/L as CaCO₃
Assessment	Wetland and lake	honohmarka	6.5	128-309		0.469	0.0150	1.000		0.841	
Criteria 1	vveuariu ariu iake	belicililarks	0.5	120-309		0.469	0.0150	1.000		0.041	-
	Wetland/Stream	benchmark ²	5.3						2.49		
	Lake benchmark	3							0.76		
MDL ⁴				0.1		0.005	0.0005	0.005	0.02	0.005	0.5
Location		# of samples collected									
Reference	Type										
D-4	Lake	2	6.7	3.0	2.8	< 0.005	< 0.0005	0.013	0.06	0.019	9.8
SR-18	Lake	2	7.0	4.2	4.9	< 0.005	< 0.0005	0.430	0.04	0.015	10.7
SR-19	Lake	4	6.9	2.7	5.5	< 0.005	< 0.0005	0.023	0.44	0.057	16.6
SR-16	Wetland/Stream	4	5.7	0.4	13.2	0.005	< 0.0005	0.007	0.91	0.037	8.3
SR-17	Wetland/Stream	4	6.1	2.0	8.7	< 0.005	< 0.0005	0.019	1.01	0.060	11.0
Near Field											
D-5		4	6.8	16.4	3.7	0.063	0.0011	0.072	0.20	0.032	29.5
D-6		4	6.6	28.0	4.3	< 0.005	<0.0005	0.013	0.16	0.101	38.3
DS-18		4	7.0	45.8	2.6	0.100	0.0011	0.019	0.17	na	63.4
M-01		4	6.7	9.1	6.0	0.019	0.0030	0.016	0.95	na	35.8
Q-09		4	6.6	65.5	3.9	0.067	0.0018	0.077	na	na	81.2
Q-20		1	6.9	18.0	2.6	<0.005	<0.0005	0.018	na	na	36.1
SC-01		1	6.6	26.0	7.8	0.014	<0.0005	0.014	0.17	na	37.7
SR-06		2	6.7	23.0	3.0	0.041	0.0005	0.124	na	na	35.0
Far Field											
SR-15		2	6.8	25.0	3.5	0.053	<0.0005	0.065	na	na	39.1
SR-01		1	6.4	25.0	3.1	<0.005	0.0010	0.042	na	na	37.8
SR-08		4	6.9	135.0	4.1	0.025	0.0008	0.018	na	na	161.3

Notes:

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Bold indicates exceedance of evaluation criteria value.

na = not applicable. Parameters are not monitored.

¹ Table S.1, Apprendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP draft (Minnow, 2020).

 $^{^2\,\}mbox{Benchmark}$ applies to wetland/stream stations: D-6, M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 5.2 Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019).

⁵ Sulphate and manganese criteria taken from Table S.2, Apprendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP draft (Minnow, 2020) Parameters are hardness dependent.

Figure 3.1.a. Annual Average Sulphate Concentrations at SR-01, SR-06, SR-08, and DS-18, 2018-2022

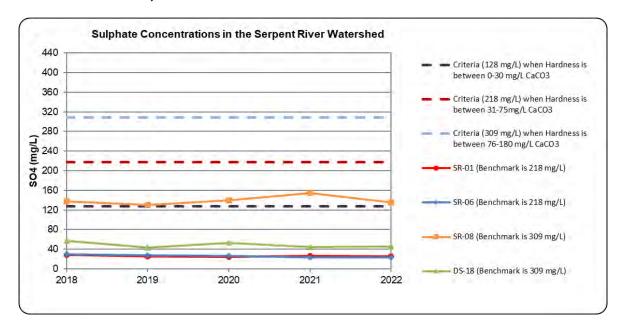


Figure 3.1.b. Annual Average Radium-226 Concentrations at SR-01, SR-06, SR-08, and DS-18, 2018-2022

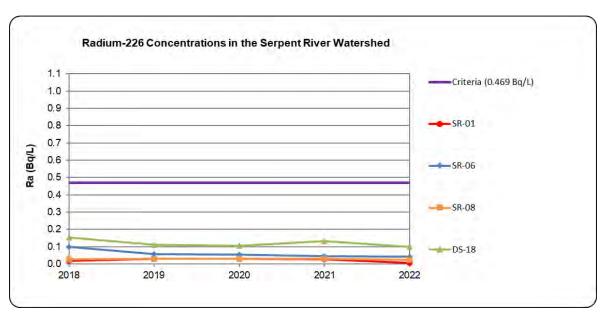
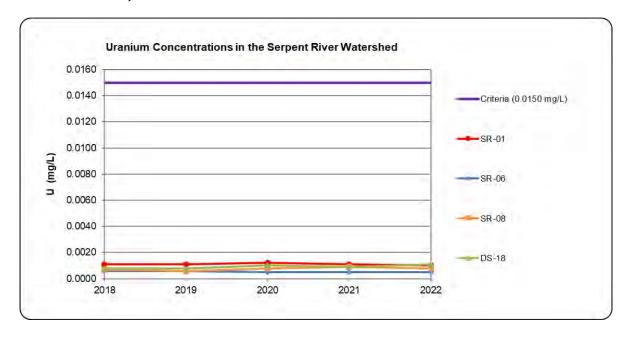



Figure 3.1.c. Annual Average Uranium Concentrations at SR-01, SR-06, SR-08, and DS-18, 2018-2022

4 DISCUSSION

4.1 Response Monitoring

Beginning in 2016, monitoring at the outlet of May Lake (SR-15) was voluntarily re-established in response to gradually increasing barium and radium concentrations upstream at the outlet of McCabe Lake (SR-06); it was previously removed in the *SRWMP Cycle 3 Study Design* (Minnow 2009). Although annual average concentrations have decreased substantially in the last three years, particularly at SR-06, station SR-15 was re-established in the monitoring program as per the *Cycle 5 Study Design* (beginning 2020) to aid in the assessment of any long-term impacts to the receiving environment (Appendix V).

4.2 SRWMP Performance Monitoring Program Changes

There were no changes to performance monitoring program in 2022. As described in the Cycle 5 Study Design (Minnow 2019), the newly approved site-specific water quality benchmark for radium-226 (0.469 Bq/L) for the protection of aquatic life, continues to be used to evaluate the SRW.

2022 SRWMP Annual Water Quality Report

As previously mentioned in Section 2.2, after review of the *Cycle 5 Study Design* (Minnow, 2019), the MECP recommended adding DOC to the SRWMP monitoring program. This was in anticipation of a new federal environmental water quality guideline for iron currently posted for public review, which includes DOC and pH as toxicity modifiers. In addition, hardness continues to be monitored as an ancillary parameter to all SRWMP stations as it assists in the interpretation of water quality concentrations for manganese and sulphate, as discussed in the approved *Cycle 4 Study Design for the SRWMP, SAMP and TOMP* (BC ENV, 2020 and Minnow, 2016).

4.3 Changes to Location Classification and Frequency

As noted in the Cycle 5 SOE, station D-6 is located in a habitat more characteristic of a wetland area, not a lake. Under this classification, D-6 was assessed based on wetland benchmarks (Photo set S.1, Appendix S, Minnow, 2021).

4.4 Representative Public Radiation Dose Estimation

The CNSC requested that RAL and DMI provide annual reporting of the radiation dose to the public associated with the closed uranium mine sites in the Serpent River Watershed. Historically, estimates of the public dose had been based on the use of very conservative values to demonstrate that public dose in the vicinity of Elliot Lake did not exceed the upper dose limit. Measurements of radon and gamma radiation collected during mine operations resulted in dose estimates less than 5% of the annual public dose limit of 1 mSv/a.

However, to determine an updated and more realistic representative annual public dose estimation for a person residing in Elliot Lake, a design monitoring program to support public dose estimation was prepared in early 2016. Details of the design program were provided in the document *Preliminary Design Monitoring Program to Support Public Dose Estimation (Ecometrix Incorporated* (Ecometrix), 2016, 2017), which was included as an appendix in the *SRWMP Annual Water Quality Report 2016* (RAL, DMI, 2017).

All components of the design monitoring program were completed in 2019 and it was concluded that the updated public dose is 0.01 mSv/a, two orders of magnitude lower than the regulatory public dose limit of 1 mSv/a. Details of the design monitoring program and the subsequent results are included in *Appendix U of the Cycle 5 SOE* (Minnow, 2021).

The public dose estimate will be reviewed, and if required, updated as part of the Cycle 6 SOE.

REFERENCES

- Beak International Incorporated 1999. Serpent River Watershed Monitoring Program Framework Document. February 1999.
- BC MOE (British Columbia Ministry of Environment). 2006. A Compendium of Working Water Quality Guidelines for British Columbia. August.
- BC ENV (British Columbia Ministry of Environment & Climate Change Strategy). 2020. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. August.
- Ecometrix Incorporated, 2016. Preliminary Design for a Monitoring Program to Support Public Dose Estimation, Prepared for Rio Algom and Denison Mines, September, 2016
- Ecometrix Incorporated, 2017. Interim Public Dose Estimation for the Closed Mines of the Serpent River Watershed. February 2018.
- Denison Mines Inc., 2021. 2020 Annual Operating Care & Maintenance Report. March 2021.
- Denison Mines Inc., 2022. 2021 Annual Operating Care & Maintenance Report. March 2022.
- Denison Mines Inc., 2023. 2022 Annual Operating Care & Maintenance Report. March 2023.
- Health Canada. 2009. Guidelines for Canadian Drinking Water Quality. Guideline Technical Document. Radiological Parameters. May.
- Minnow Environmental Inc., 2009a. Serpent River Watershed State of the Environment. Prepared for Rio Algom Limited and Denison Mines Inc. January 2009.
- Minnow Environmental Inc., 2009b. Serpent River Watershed Monitoring Program, Cycle 3 Study Design. Prepared for Rio Algom Limited and Denison Mines Inc. May 2009.
- Minnow Environmental Inc., 2009c. Monitoring Framework for Closed Uranium Mines, Near Elliot Lake. Prepared for Rio Algom Limited and Denison Mines Inc. May 2009.
- Minnow Environmental Inc., 2011. Serpent River Watershed State of the Environment Report.

 Prepared for Rio Algom Limited and Denison Mines Inc. July 2011.
- Minnow Environmental Inc., 2016a. Cycle 4 Study Design for the SRWMP, SAMP and TOMP.

 Prepared for Rio Algom Limited and Denison Mines Inc. February 2016.
- Minnow Environmental Inc., 2016b. Serpent River Watershed Cycle 4 State of the Environment Report. Prepared for Rio Algom Limited and Denison Mines Inc. November 2017.
- Minnow Environmental Inc., 2019. Cycle 5 Study Design for the SRWMP, SAMP and TOMP. Prepared for Rio Algom Limited and Denison Mines Inc. April 2019.
- Minnow Environmental Inc., 2021. Serpent River Watershed Cycle 5 State of the Environment Report. Prepared for Rio Algom Limited and Denison Mines Inc. March 2021.
- OMOE. 1994. Water Management: Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of Environment and Energy. July, 1994. Reprinted February, 1999.
- Rio Algom Limited, 2019. 2018 Annual Operating Care Maintenance Report. March 2019.

2022 SRWMP Annual Water Quality Report

- Rio Algom Limited, 2020. 2019 Annual Operating Care Maintenance Report. March 2020.
- Rio Algom Limited, 2021. 2020 Annual Operating Care Maintenance Report. March 2021.
- Rio Algom Limited, 2022. 2021 Annual Operating Care Maintenance Report. March 2022.
- Rio Algom Limited, 2023. 2022 Annual Operating Care Maintenance Report. March 2023.
- Rio Algom Limited and Denison Mines Inc., 2018. Serpent River Watershed Monitoring Program 2017 Annual Water Quality Report. March 2018.
- Rio Algom Limited and Denison Mines Inc., 2021. Serpent River Watershed Monitoring Program 2020 Annual Water Quality Report. March 2021.
- World Health Organization (WHO). 2001. Barium and barium compounds. Concise International Chemical Assessment Document 33. Geneva, 2001.

APPENDIX 1 Performance Monitoring Changes 1999 - 2021 Evolution of Programs

Summary of Changes to the Elliot Lake Monitoring Programs (IBMP, TOMP, SAMP, and SRWMP) and Associated Documents^b

Cycle	Report Title	Year	Period Covered	Descriptions of Changes to the Monitoring Programs within Each Cycle			
	Serpent River Watershed Monitoring Program Framework Document	1999					
	In-Basin Monitoring Program Report	1999	historical monitoring data				
Cycle 1	Serpent River Watershed and In- Basin Monitoring Program – Implementation Document	1999		IBMP, TOMP, SAMP, and SRWMP were developed based on program objectives and existing monitoring data collected over the period of operations and decommissioning.			
	Serpent River Watershed Monitoring Program -1999 Study	2001	4000 to 2000				
	In-Basin Monitoring Program for the Uranium Tailings Areas - 1999 Study	2001	1999 to 2000				
	Overview of Elliot Lake Monitoring Programs and Source Area Monitoring Program Design	2002		Changes only SRWMP most associated with optimization after first cycle of program			
	TMA Operational Monitoring Program Design (TOMP)	2002					was complete: • monitoring substances reduced to mine indicator parameters (barium, cobalt, DOC, iron, manganese, radium-226, selenium, silver, sulphate and uranium);
Cycle 2	Cycle 2 Study Design – Serpent River Watershed and In- Basin Monitoring Programs	2004		 addition of two lake reference stations (Summers and Semiwite lakes) and 3 stream reference areas (SR-16, SR-17 and SR-18); removal of shallow lakes for sediment and benthic sampling (Westner, Grassy, Halfmoom, Upper Cinder and Horne lakes); 			
Cycle 2	Serpent River Watershed Monitoring Program: Cycle 2 Interpretive Report	2005	2000 to 2004	 removal of some stream sediment and benthic stations (D-15, SC-03 and SR-07); removal of Depot Lake and Serpent Harbour; addition of May Lake; the transfer of some SRWMP stations to SAMP or TOMP (N-12, ECA-131, P-11, 			
	Serpent River In-Basin Monitoring Program: Cycle 2 Interpretive Report - 2004 Study	2005		MPE and Q-23); and • fish health assessment eliminated based on performance, fish community assessment added for McCabe Lake and fish tissue monitoring reduced in scope			
	Serpent River Watershed State of the Environment	2009		based on performance.			
	Monitoring Framework For Closed Uranium Mines Near Elliot Lake	2009		IBMP eliminated based on objectives of program being achieved.			
	In Basin Monitoring Program, Cycle 3 Study Design	2009		TOMP and SAMP: • removal of silver, selenium based on performance and removal of conductivity based on redundancy with sulphate; and			

Cycle 3	Serpent River Watershed Monitoring Program: Cycle 3 Study Design Source Area Monitoring Program Revised Study Design Tailing Management Area Monitoring Program (TOMP) Revised Study Design Serpent River Watershed State of	2009 2009 2009	- 2005 to 2009	 DOC, hardness and flow added at selected stations. SRWMP: removal of selenium and sliver based on performance; removal of station SR-12, ELO, SR-09, SR-15, SR-02, SR-03, SR-11, P-01, QL-01 and SR-16 and SR-17 based on performance; monthly monitoring frequency reduced to quarterly; sediment and benthic monitoring removed from Whiskey, Evans and Cinder lakes based on redundancy; depositional streams (Q-20, D-6, SR-06, M-01 and SR-08) based on very high natural variability masking results; and fishing in MrCabe Lake and fish tissue monitoring eliminated based on performance 			
	the Environment Report	2011		fishing in McCabe Lake and fish tissue monitoring eliminated based on performan			
Cycle 4	Cycle 4 Study Design For the SRWMP, SAMP and TOMP	2014 ^a	2010 to 2014	Minor changes to TOMP and SAMP . SRWMP: • elimination of reference stations SR-05, P-222 and SR-14; • removal of cobalt as substance for monitoring, addition of DOC;			
Gycle 4	Serpent River Watershed Cycle 4 State of the Environment	2016	2010 to 2011	 far-field lakes removed from the program (Hough, Pecors, and McCarthy); removal of Rochester Lake as a sediment and benthic reference area; and reduction in benthic and sediment sampling to 1/10 years based on measured deposition rates. 			
Cycle 5	Cycle 5 Study Design For the SRWMP, SAMP and TOMP	2019	2015 to 2019	TOMP, SAMP, and SRWMP: • improved approach to trend analysis of surface water quality using the non-parametric seasonal Kendall test. SRWMP: • improved approach to calculate benchmark upper limit of background water quality values have previously been calculated based on the upper 95th percentile of values collect across all five years (rather than annual means); • use of a Serpent River Watershed site-specific dose-based radium-226 benchmark for assessment of water quality; • addition of a lake-specific dose-based radium-226 benchmark for sediment quality; and			
	Serpent River Watershed Cycle 5 State of the Environment	2021		 sediment and benthic monitoring removed from Elliot Lake based on improvement in water quality, negligible mine-related sediment toxicity, and gradual improvement benthic invertebrate communities. 			

^a Study Design was submitted to CNSC and JRG in 2014 but reissued with agency comments in 2016.

Notes: IBMP = In Basin Monitoring Program. TOMP = Tailings Management Area Monitoring Program. SAMP = Source Area Monitoring Program. SRWMP = Serpent River Watershed Monitoring Program.

^b Table 1.2, Cycle 5 State of the Environment Report, Minnow, 2021

APPENDIX II Flagged Data Results

SRWMP Data Flags Annual Flagged Data 2022 Revision 2020-01

Report Form: RC8.7.3.01

Location	Analyte	Date	Low	Hi	Result	Comment
D-4	Fe	2022-05-05	0.02	0.02	0.07 mg/L	Result is an 11-year, but only slightly above the high flag limit. Will continue to monitor at the current semi-annual frequency.
SR-06	DOC	2022-05-25	3.0	3.3	2.9 mg/L	Result is only slightly below the low flag limit and consistent with values before 2009. Will continue to monitor at the current semi-annual frequency.
SR-08	Fe	2022-05-27	0.01	0.08	0.10 mg/L	Result is slightly above the high flag limit but consistent with previous values in the last four years.
SR-15	Fe	2022-05-25	0.01	0.04	0.66 mg/L	Result is a historic high and more than an order of magnitude higher than expected values. The sample could not be repeated due to insufficient sample volume. All other parameter results were within typical values and therefore, the result was deemed erroneous and removed from the data set.
D-4	DOC pHF	2022-08-23	2.5 6.9	3.3 6.9	3.4 mg/L 6.8	DOC is slightly above the high flag limits and pH is slightly below the low flag but both areconsistent with previous values in the last five years.

SRWMP Data Flags Annual Flagged Data 2022 Revision 2020-01

Report Form: RC8.7.3.01

Location	Analyte	Date	Low	Hi	Result	Comment
DS-18	FLOW	2022-08-23	137.5	460.5	89.7 L/s	Result is slightly below the low flag limit, but consistent with seasonal lows in the last three years.
D-4	Mn	2022-11-23	0.009	0.014	0.0263 mg/L	Result is above the high flag limit, but consistent with previous values in the last five years.
	pHF	2022-11-23	6.7	7.0	6.4	Result is a 20-year low, but consistent with historic lows (6.2). Will continue to monitor at the current semi-annual frequency.
D-5	hard SO4 phF	2022-11-23 2022-11-23 2022-11-23	6.8 0.3 6.4	32.3 18.9 7.4	63.8 mg/L 42 mg/L 6.3	Results are 16-year highs confirmed by repeat analysis but still consistent with historic values. Will continue to monitor at the current semi-annual frequency.
Q-09	hard	2022-11-24	6.7	90.2	169 mg/L	Result is a 7-year high confirmed by repeat analysis, but still consistent with historical spikes. Will continue to monitor at the current quarterly frequency.
	pHF	2022-11-24	6.4	7.2	6.2	Result is slightly below the low flag limit, but still consistent with historic values. Will continue to monitor at current quarterly frequency.

SRWMP Data Flags Annual Flagged Data 2022 Revision 2020-01

Issued on: June 30, 2020

Expires on: June 30, 2024

Report Form: RC8.7.3.01

Location	Analyte	Date	Low	Hi	Result		Comment
Q-09	SO4	2022-11-24	0	81.164	140 :	mg/L	Result is above the high flag limit, but consistent with previous spikes in the last six years. Will continue to monitor at the current quarterly frequency.
	U	2022-11-24	0.0003	0.0029	0.0034	mg/L	Result is slightly above the high flag limit, but consistent with previous spikes in the last five years.
SC-01	DOC	2022-11-25	0	7.3	7.8	mg/L	Result is only slightly above the high flag limit. This parameter was discontinued in 2014 and re-established in 2020. Sampling is done annually at this location so there is insufficient data to establish a valid high/low limit. Will continue to monitor at the current annual frequency.
SR-18	Ba DOC Fe	2022-11-23 2022-11-23 2022-11-23	0.038 3.9 0	0.055 6.5 0.15	0.119 18.6 0.458	mg/L mg/L mg/L	Results are historic highs and all were confirmed by repeat analysis. However, results are 2 to 3 times higher than expected values (DOC and barium) and almost an order of magnitude higher for most iron results. All other parameters remained within expected values. Barium, DOC and iron results appear erroneous and were deemed as outliers and removed from the data set.

APPENDIX III Laboratory QA/QC Results

REPORT CODE: DEN-ANN22

REPORT TITLE: Annual 2022 Denison Data Quality

Report

REVISION: 1.0

ISSUED BY:

Quality Coordinator,

SGS Environmental, Lakefield

AUTHORIZED BY:

Technical Manager,

SGS Environmental, Lakefield

DATE: 16 Mar. 2023

Table of Contents

1.	BACKGROUND	3
2.	QUALITY MANAGEMENT SYSTEM	3
3.	QUALITY CONTROL PARAMETERS	3
4.	NOTABLE OCCURANCES/ACTIONS	3
5.	QC DATA SUMMARY	4
5.1.	Blank Data	4
5 .2 .	Reference Material/Spiked Blank Data	5
5.3.	Duplicate Data	
5.4.	Spike Duplicate Data	7
5.5.	QC Frequency	8

BACKGROUND

SGS Laboratory entered into an agreement with Denison Environmental Services for the analytical lab to provide analysis according to RFT #05-016. Please find below a summary of the laboratory quality management system, key actions taken by the laboratory, as well as a summary of numbers of samples analyzed.

2. QUALITY MANAGEMENT SYSTEM

SGS Environmental, Lakefield is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation (CALA), for specific tests listed in the scope of accreditation. ISO/IEC 17025 addresses both quality management and the technical aspects of operating a testing laboratory.

The quality management system at SGS Environmental consists of a documented quality system, which is directed by the Quality Coordinator who is independent of the production area. All appropriate documentation (quality manual, methods, written instructions, standard operating procedures, and data approval criteria) is in place and includes both general and method specific quality control requirements.

The quality control procedures include duplicate samples, spiked blanks, spiked replicates, reagent/instrument blanks, preparation control samples, certified reference material analysis, and instrument control samples, as appropriate for the individual methods. Matrix matching of reference materials to samples is always attempted. Frequency of insertion of control samples is method specific and follows legislated guidelines. A summary of the quality control recoveries is presented in the tables following.

3. QUALITY CONTROL PARAMETERS

All QC parameters are taken directly from SGS LIMS. Denison Environmental Services samples are processed as part of our "worksheet" batch system. A compilation of all QC data appropriate to the parameters tested has been compiled below.

4. NOTABLE OCCURANCES/ACTIONS

- SGS Environmental, Lakefield laboratory performed 41247 analyses with 14055 QC checks, which represents 34.4% QC for sample analysis. Corrective Action: N/A
- All blank data results were within the data quality objectives. Corrective Action: N/A
- All CRM/spike blank data results were within the data quality objectives. Corrective Action: N/A
- No duplicate value exceeded the data quality objectives. Corrective Action: N/A
- No spike duplicates fell outside of the data quality objectives. Corrective Action: N/A

Confidential – Intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.

File/Pathway: DEN-ANN21

5. QC DATA SUMMARY

5.1. Blank Data

Parameter	Unit	Required limit	Number of Blanks	Mean Blank Result
Acidity	mg/L as CaCO3	2	141	1.9
Silver (total)	mg/L	0.0001	162	<0.0001
Alkalinity	mg/L as CaCO3	2	92	1.0
Arsenic (total)	mg/L	0.0005	148	<0.0005
Barium (total)	mg/L	0.005	274	<0.005
Cobalt (total)	mg/L	0.0005	230	<0.0005
Copper (total)	mg/L	0.0002	167	<0.0005
Dissolved Organic				
Carbon	mg/L	0.5	114	<0.5
Iron (total)	mg/L	0.02	253	<0.02
Manganese (total)	mg/L	0.002	237	<0.002
Nickel (total)	mg/L	0.002	165	<0.002
Lead (total)	mg/L	0.00002	168	<0.00002
Ra226	Bq/L	0.005	207	<0.005
Selenium (total)	mg/L	0.0005	164	<0.0005
Sulphate	mg/L	0.1	333	<0.1
Total Dissolved Solids	mg/L	10	30	
Total Suspended				
Solids	mg/L	1	262	< 1
Uranium (total)	mg/L	0.0005	235	<0.0005
Zinc (total)	mg/L	0.001	167	<0.001

5.2. Reference Material/Spiked Blank Data

		Number of		
Parameter	Unit	CRM's	Recovery (%)	
Acidity	mg/L as CaCO3	141	99.0	
Silver (total)	mg/L	162	100.5	
Alkalinity	mg/L as CaCO3	92	100.8	
Arsenic (total)	mg/L	148	101.1	
Barium (total)	mg/L	274	99.3	
Cobalt (total)	mg/L	230	100.7	
Copper (total)	mg/L	167	99.1	
Dissolved Organic				
Carbon	mg/L	114	101.1	
iron (total)	mg/L	253	100.2	
Manganese (total)	mg/L	237	101.8	
Nickel (total)	mg/L	165	100.1	
Lead (total)	mg/L	168	100.5	
Ra226	Bq/L	207	102.3	
Selenium (total)	mg/L	164	101.8	
Sulphate	mg/L	333	97.3	
Total Dissolved Solids	mg/L	29		
Total Suspended		-		
Solids	mg/L	262	98.4	
Uranium (total)	mg/L	235	97.3	
Zinc (total)	mg/L	167	100.4	

5.3. Duplicate Data

Parameter	Unit	Required RPD*	Number of Duplicates	RPD*
Acidity	mg/L as CaCO3	20	141	ND
Silver (total)	mg/L	20	162	7.5
Alkalinity	mg/L as CaCO3	20	92	1.8
Arsenic (total)	mg/L	20	148	5.8
Barium (total)	mg/L	20	274	3.4
Cobalt (total)	mg/L	20	230	5.6
Copper (total)	mg/L	20	167	5.1
Dissolved Organic				
Carbon	mg/L	20	114	1.4
Iron (total)	mg/L	20	253	5.4
Manganese (total)	mg/L	20	237	3.6
Nickel (total)	mg/L	20	165	4.9
Lead (total)	mg/L	20	168	6.1
Ra226	Bq/L	20	207	8.9
Selenium (total)	mg/L	20	161	8.6
Sulphate	mg/L	20	333	2.1
Total Dissolved Solids	mg/L	20	30	2.6
Total Suspended	4.			
Solids	mg/L	20	262	2.1
Uranium (total)	mg/L	20	235	4.8
Zinc (total)	mg/L	20	167	4.3

^{*}RPD - Relative Percent Difference ND - No

Data

5.4. Spike Duplicate Data

		Number of Spike	Mean %	
Parameter	Unit	Rep's	Recovery	
Acidity	mg/L as CaCO3	0	NA	
Silver (total)	mg/L	162	92.7	
Alkalinity	mg/L as CaCO3	92	NA	
Arsenic (total)	mg/L	148	102.3	
Barium (total)	mg/L	274	99.1	
Cobalt (total)	mg/L	230	99.6	
Copper (total)	mg/L	167	100.5	
Dissolved Organic				
Carbon	mg/L	114	100.1	
Iron (total)	mg/L	253	102.1	
Manganese (total)	mg/L	237	101.0	
Nickel (total)	mg/L	165	97.3	
Lead (total)	mg/L	168	98.9	
Ra226	Bq/L	180	103.2	
Selenium (total)	mg/L	309	103.5	
Sulphate	mg/L	54	96.8	
Total Dissolved Solids	mg/L	252	NA	
Total Suspended				
Solids	mg/L	229	NA	
Uranium (total)	mg/L	159	97.0	
Zinc (total)	mg/L	219	102.6	

Confidential – Intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.

5.5. QC Frequency

Total Number of Blanks:	3549
Total Number of Reference Materials/Spike	
Blanks	3548
Total Number of Duplicate Samples	3546
Total Number of Spike Duplicate Samples	3412
Sum of QC Insertion	14055
Total Analysis	41247

APPENDIX IV Field QA/QC Results

Registry: RC8.5.4.01a

SRWMP DATA QUALITY REPORTING Field Precision 2022 Revision: 2020-01

Issued on: June 22, 2020

Expires on: June 22, 2024

Page 1 of 1

Month	Sample	рН	Sulphate	Radium (T)	Uranium	Barium	DOC	Iron	Manganese	Hardness
			mg/L	Bq/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2022-05	BSD2	6.8	11.0	< 0.005	< 0.0005	0.011	4.0	0.15	0.057	18.8
	D-6	6.8	11.0	< 0.005	< 0.0005	0.011	4.1	0.13	0.056	18.7
	variance	0.0%	0.0%	0.0%	0.0%	0.9%	2.5%	14.3%	1.8%	0.5%
2022-05	BSR5	6.6	7.6	0.018	0.0032	0.013	6.5	0.63	0.119	28.8
	M-01	6.6	7.5	0.017	0.0030	0.013	6.5	0.55	0.111	28.1
	variance	0.0%	1.3%	5.7%	6.5%	3.1%	0.0%	13.6%	7.0%	2.5%
2022-11	BSR5	6.5	12.0	0.015	0.0020	0.015	5.4	0.52	0.065	38.2
	M-01	6.6	12.0	0.019	0.0019	0.014	5.7	0.52	0.064	38.3
	variance	1.5%	0.0%	23.5%	5.1%	3.4%	5.4%	0.0%	1.6%	0.3%
2022-11	BSD2	6.3	43.0	< 0.005	< 0.0005	0.015	3.9	0.21	0.116	58.7
	D-6	6.2	43.0	< 0.005	< 0.0005	0.015	3.8	0.17	0.113	58.0
	variance	1.6%	0.0%	0.0%	0.0%	0.7%	2.6%	21.1%	2.6%	1.2%
Count		4	4	4	4	4	4	4	4	4
Average		0.8%	0.3%	7.3%	2.9%	2.0%	2.6%	12.2%	3.2%	1.1%
Max		1.6%	1.3%	23.5%	6.5%	3.4%	5.4%	21.1%	7.0%	2.5%
Min		0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	1.6%	0.3%
SRWMP	Target ¹	20%	20%	20%	20%	20%	20%	20%	20%	20%
# Exceed	ances	0	0	1	0	0	0	1	0	0

¹ Field Blank criteria as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019) Bold indicates an exceedance in the field precision criteria

SRWMP DATA QUALITY REPORTING Field Blanks 2022 Revision: 2020-01

Report Form: RC8.5.4.01b

Date		рН	Sulphate	Radium (total)	Uranium	Barium	DOC	Iron	Manganese	Hardness
			mg/L	Bq/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
SRWI	MP ¹		0.2	0.01	0.001	0.01	1.0	0.04	0.004	1.0
2022.05	FBD2	6.0	< 0.1	< 0.005	< 0.0005	< 0.005	< 0.5	< 0.02	0.004	< 0.5
2022.05	FBR5	6.0	< 0.1	< 0.005	< 0.0005	< 0.005	< 0.5	< 0.02	< 0.002	< 0.5
2022.11	FBR5	6.7	< 0.1	< 0.005	< 0.0005	< 0.005	< 0.5	< 0.02	< 0.002	< 0.5
2022.11	FBD2	5.9	< 0.1	< 0.005	< 0.0005	< 0.005	< 0.5	< 0.02	< 0.002	< 0.5
Count		4	4	4	4	4	4.0	4	4	4
# Exceedance	es	0	0	0	0	0	0.0	0	0	0
Average		6.2	< 0.1	< 0.005	< 0.0005	< 0.005	< 0.5	< 0.02	0.003	< 0.5
Max		6.7	< 0.1	< 0.005	< 0.0005	< 0.005	< 0.5	< 0.02	0.004	< 0.5
Min		5.9	< 0.1	< 0.005	< 0.0005	< 0.005	< 0.5	< 0.02	< 0.002	< 0.5

¹ Field Blank criteria as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019) Bold indicates an exceedance in the Field Blank criteria

Issued on: June 22, 2020 Expires on: June 22, 2024

APPENDIX V Location Results

BSD2

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	Mn	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-05	4.0	18.8	6.8	11.0	<0.005	0.011	0.15	0.057	
2022-11	3.9	58.7	6.3	43.0	<0.005	0.015	0.21	0.116	
Count	2	2	2	2	2	2	2	2	
High	4.0	58.7	6.8	43.0	< 0.005	0.015	0.21	0.116	
Low	3.9	18.8	6.3	11.0	< 0.005	0.011	0.15	0.057	
Mean	4.0	38.8	6.5	27.0	<0.005	0.013	0.18	0.087	
High Limit Low Limit	11.0		8.5 5.3	218	0.469	1.000	2.49	0.841	
Lim Ex	0	0	1	0	0	0	0	0	
Frequency	0%	0%	50%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	U
	mg/L
2022-05	<0.0005
2022-11	<0.0005
0	0
Count	2
High	<0.0005
Low	<0.0005
Mean	<0.0005
High Limit	0.0150
Lim Ex	0
Frequency	0%
10x Lim Éx	0
Frequency	0%

BSR5

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	U	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-05	6.5	28.8	6.6	7.6	0.018	0.013	0.63	0.0032	
2022-11	5.4	38.2	6.5	12.0	0.015	0.015	0.52	0.0020	
Count	2	2	2	2	2	2	2	2	
High	6.5	38.2	6.6	12.0	0.018	0.015	0.63	0.0032	
Low	5.4	28.8	6.5	7.6	0.015	0.013	0.52	0.0020	
Mean	6.0	33.5	6.5	9.8	0.017	0.014	0.58	0.0026	
High Limit Low Limit	11.0		8.5 5.3	218	0.469	1.000	2.49	0.0150	
Lim Ex	0	0	0	0	0	0	2	0	
Frequency	0%	0%	0%	0%	0%	0%	100%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

D-4 Dunlop Lake Outlet

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	Mn	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-05	2.8	9.7	6.9	3.0	<0.005	0.012	0.07	0.012	
2022-11	2.9	10.0	6.4	2.9	<0.005	0.013	0.05	0.026	
Count	2	2	2	2	2	2	2	2	
High	2.9	10.0	6.9	3.0	< 0.005	0.013	0.07	0.026	
Low	2.8	9.7	6.4	2.9	< 0.005	0.012	0.05	0.012	
Mean	2.8	9.8	6.7	3.0	<0.005	0.013	0.06	0.019	
High Limit Low Limit	11.0		8.5 6.5	128.0	0.469	1.000	0.76	0.841	
Lim Ex	0	0	1	0	0	0	0	0	
Frequency	0%	0%	50%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	U
	mg/L
2022-05	<0.0005
2022-11	<0.0005
Count	2
Count	2
High	<0.0005
Low	<0.0005
Mean	<0.0005
High Limit	0.0150
Lim Ex	0
Frequency	0%
10x Lim Éx	0
Frequency	0%

D-5 Serpent R. between Denison and Quirke TMAs

Month	DOC	FLOW	hard	pHF	SO4	Ra	Ва	Mn	
	mg/L	L/s	mg/L		mg/L	Bq/L	mg/L	mg/L	
2022-02	4.0	1085.00	15.3	6.9	5.9	0.008	0.026	0.029	
2022-05	3.0	5800.00	15.9	6.9	6.9	0.025	0.030	0.017	
2022-08	4.1	618.00	23.0	6.9	11.0	0.096	0.101	0.039	
2022-11	3.8	1030.00	63.8	6.3	42.0	0.121	0.132	0.042	
Count	4	4	4	4	4	4	4	4	
High	4.1	5800.00	63.8	6.9	42.0	0.121	0.132	0.042	
Low	3.0	618.00	15.3	6.3	5.9	0.008	0.026	0.017	
Mean	3.7	2133.25	29.5	6.8	16.4	0.063	0.072	0.032	
High Limit Low Limit	11.0			8.5 6.5	128	0.469	1.000	0.841	
Lim Ex	0	0	0	1	0	0	0	0	
Frequency	0%	0%	0%	25%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	U
	mg/L
2022-02	<0.0005
2022-05	0.0006
2022-08	0.0013
2022-11	0.0020
Count	4
High	0.0020
Low	<0.0005
Mean	0.0011
High Limit	0.0150
Lim Ex	0
Frequency	0%
10x Lim Ex	0
Frequency	0%

D-6 Cinder Lake Outlet

Month	DOC	FLOW	hard	pHF	SO4	Ra	Ва	Fe	
	mg/L	L/s	mg/L		mg/L	Bq/L	mg/L	mg/L	
2022-02	5.6		22.3	6.7	13.0	<0.005	0.013	0.15	
2022-05	4.1	85.00	18.7	6.8	11.0	< 0.005	0.011	0.13	
2022-08	3.9	6.00	54.0	6.6	45.0	< 0.005	0.012	0.20	
2022-11	3.8	5.20	58.0	6.2	43.0	<0.005	0.015	0.17	
Count	4	4	4	4	4	4	4	4	
High	5.6	85.00	58.0	6.8	45.0	< 0.005	0.015	0.20	
Low	3.8	5.20	18.7	6.2	11.0	< 0.005	0.011	0.13	
Mean	4.3	32.07	38.3	6.6	28.0	<0.005	0.013	0.16	
High Limit Low Limit	11.0			8.5 5.3	218	0.469	1.000	2.49	
Lim Ex	0	0	0	1	0	0	0	0	
Frequency	0%	0%	0%	25%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	Mn	U
	mg/L	mg/L
2022-02	0.064	<0.0005
2022-05	0.056	< 0.0005
2022-08	0.173	<0.0005
2022-11	0.113	<0.0005
Count	4	4
High	0.173	< 0.0005
Low	0.056	< 0.0005
Mean	0.101	<0.0005
High Limit	0.841	0.0150
Lim Ex	0	0
Frequency	0%	0%
10x Lim Éx	0	0
Frequency	0%	0%

DS-18 Halfmoon Lake Outlet

Month	DOC	FLOW	hard	pHF	SO4	Ra	Ва	Fe	
	mg/L	L/s	mg/L		mg/L	Bq/L	mg/L	mg/L	
2022-02	2.7		79.3	7.1	67.0	0.108	0.019	0.21	
2022-05	2.2	245.00	61.8	6.9	52.0	0.133	0.026	0.20	
2022-08	2.9	89.70	51.5	7.2	29.0	0.078	0.014	0.16	
2022-11	2.8	50.00	61.1	7.0	35.0	0.080	0.018	0.13	
Count	4	4	4	4	4	4	4	4	
High	2.9	245.00	79.3	7.2	67.0	0.133	0.026	0.21	
Low	2.2	50.00	51.5	6.9	29.0	0.078	0.014	0.13	
Mean	2.6	128.23	63.4	7.0	45.8	0.100	0.019	0.17	
High Limit Low Limit	11.0			8.5 5.3	309	0.469	1.000	2.49	
Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	U
	mg/L
2022-02	0.0008
2022-05	0.0009
2022-08	0.0013
2022-11	0.0016
Count	4
High	0.0016
Low	0.0008
Mean	0.0011
High Limit	0.0150
Lim Ex	0.0100
Frequency	0%
10x Lim Ex	0
Frequency	0%

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	Mn	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-05	<0.5	<0.5	6.0	<0.1	<0.005	<0.005	<0.02	0.004	
2022-11	<0.5	<0.5	5.9	<0.1	<0.005	<0.005	<0.02	<0.002	
Count	2	2	2	2	2	2	2	2	
High	<0.5	<0.5	6.0	<0.1	< 0.005	< 0.005	< 0.02	0.004	
Low	<0.5	<0.5	5.9	<0.1	< 0.005	< 0.005	< 0.02	< 0.002	
Mean	<0.5	<0.5	6.0	<0.1	<0.005	<0.005	<0.02	0.003	
High Limit Low Limit	11.0		8.5 5.3	218	0.469	1.000	2.49	0.841	
Lim Ex	0	0	2	0	0	0	0	0	
Frequency	0%	0%	100%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	U
	mg/L
2022-05	<0.0005
2022-11	<0.0005
	•
Count	2
High	<0.0005
Low	<0.0005
Mean	<0.0005
High Limit	0.0150
Lim Ex	0
Frequency	0%
10x Lim Ex	0
Frequency	0%

FBR5

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	U	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-05	<0.5	<0.5	6.0	<0.1	<0.005	<0.005	<0.02	<0.0005	
2022-11	<0.5	<0.5	6.7	<0.1	<0.005	<0.005	<0.02	<0.0005	
Count	2	2	2	2	2	2	2	2	
High	<0.5	<0.5	6.7	<0.1	< 0.005	< 0.005	< 0.02	< 0.0005	
Low	<0.5	<0.5	6.0	<0.1	< 0.005	< 0.005	< 0.02	< 0.0005	
Mean	<0.5	<0.5	6.3	<0.1	<0.005	<0.005	<0.02	<0.0005	
High Limit Low Limit	11.0		8.5 5.3	218	0.469	1.000	2.49	0.0150	
Lim Ex	0	0	1	0	0	0	0	0	
Frequency	0%	0%	50%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

M-01 Sherriff Creek @ Hwy 108

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	U	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-02	5.0	39.5	6.6	11.0	0.014	0.018	0.78	0.0034	
2022-05	6.5	28.1	6.6	7.5	0.017	0.013	0.55	0.0030	
2022-08	6.9	37.1	6.8	5.9	0.026	0.021	1.96	0.0037	
2022-11	5.7	38.3	6.6	12.0	0.019	0.014	0.52	0.0019	
Count	4	4	4	4	4	4	4	4	
High	6.9	39.5	6.8	12.0	0.026	0.021	1.96	0.0037	
Low	5.0	28.1	6.6	5.9	0.014	0.013	0.52	0.0019	
Mean	6.0	35.8	6.7	9.1	0.019	0.016	0.95	0.0030	
High Limit			8.5	218	0.469	1.000	2.49	0.0150	
Low Limit			5.3						
Lim Ex	0	0	0	0	0	0	4	0	
Frequency	0%	0%	0%	0%	0%	0%	100%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Q-09 Serpent R. below Quirke TMA Effluent

Month	DOC	FLOW	hard	pHF	SO4	Ra	Ва	U	
	mg/L	L/s	mg/L		mg/L	Bq/L	mg/L	mg/L	
2022-02	4.2	1160.00	63.9	6.8	52.0	0.029	0.033	0.0013	
2022-05	3.3	5920.00	23.6	6.9	14.0	0.016	0.030	0.0008	
2022-08	4.4	658.00	68.1	6.7	56.0	0.126	0.122	0.0018	
2022-11	3.8	1200.00	169.0	6.2	140.0	0.098	0.122	0.0034	
Count	4	4	4	4	4	4	4	4	
High	4.4	5920.00	169.0	6.9	140.0	0.126	0.122	0.0034	
Low	3.3	658.00	23.6	6.2	14.0	0.016	0.030	0.0008	
Mean	3.9	2234.50	81.2	6.6	65.5	0.067	0.077	0.0018	
High Limit Low Limit	11.0			8.5 6.5	218	0.469	1.000	0.0150	
Lim Ex	0	0	0	1	1	0	0	0	
Frequency	0%	0%	0%	25%	25%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Q-20 Evans Lake Outlet to Dunlop Lake

Month	DOC	FLOW	hard	pHF	SO4	Ra	Ва	U	
	mg/L	L/s	mg/L		mg/L	Bq/L	mg/L	mg/L	
2022-11	2.6	4.00	36.1	6.9	18.0	<0.005	0.018	<0.0005	
Count	1	1	1	1	1	1	1	1	
High	2.6	4.00	36.1	6.9	18.0	< 0.005	0.018	< 0.0005	
Low	2.6	4.00	36.1	6.9	18.0	< 0.005	0.018	< 0.0005	
Mean	2.6	4.00	36.1	6.9	18.0	<0.005	0.018	<0.0005	
High Limit Low Limit	11.0			8.5 6.5	218	0.469	1.000	0.0150	
Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

SC-01 Westner Lake Outlet

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	U	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-11	7.8	37.7	6.6	26.0	0.014	0.014	0.17	<0.0005	
Count	1	1	1	1	1	1	1	1	
High	7.8	37.7	6.6	26.0	0.014	0.014	0.17	<0.0005	
Low	7.8	37.7	6.6	26.0	0.014	0.014	0.17	<0.0005	
Mean	7.8	37.7	6.6	26.0	0.014	0.014	0.17	<0.0005	
High Limit			8.5	128.0	0.469	1.000	2.49	0.0150	
Low Limit			5.3						
Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

SR-01 Quirke Lake Outlet

Month	DOC	hard	pHF	SO4	Ra	Ва	U
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L
2022-09	3.1	37.8	6.4	25.0	<0.005	0.042	0.0010
Count	1	1	1	1	1	1	1
High	3.1	37.8	6.4	25.0	< 0.005	0.042	0.0010
Low	3.1	37.8	6.4	25.0	< 0.005	0.042	0.0010
Mean	3.1	37.8	6.4	25.0	<0.005	0.042	0.0010
High Limit Low Limit	11.0		8.5 6.5	128.0	0.469	1.000	0.0150
Lim Ex	0	0	1	0	0	0	0
Frequency	0%	0%	100%	0%	0%	0%	0%
10x Lim Ex	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%

SR-06 McCabe Lake Outlet

Month	DOC	FLOW	hard	pHF	SO4	Ra	Ва	U	
	mg/L	L/s	mg/L		mg/L	Bq/L	mg/L	mg/L	
2022-05	2.9	246.00	33.6	6.5	23.0	0.040	0.112	0.0006	
2022-09	3.2	1.00	36.3	6.9	23.0	0.041	0.136	0.0005	
Count	2	2	2	2	2	2	2	2	
High	3.2	246.00	36.3	6.9	23.0	0.041	0.136	0.0006	
Low	2.9	1.00	33.6	6.5	23.0	0.040	0.112	0.0005	
Mean	3.0	123.50	35.0	6.7	23.0	0.041	0.124	0.0005	
High Limit Low Limit	11.0			8.5 6.5	218	0.469	1.000	0.0150	
Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

SR-08 Nordic Lake Outlet

Month	DOC	hard	pHF	SO4	Ra	Ва	U
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L
2022-02	4.4	203.0	6.9	160.0	0.026	0.022	0.0009
2022-05	3.7	137.0	6.8	110.0	0.024	0.017	0.0006
2022-08	4.2	148.0	6.8	130.0	0.019	0.016	0.0007
2022-11	4.2	157.0	6.9	140.0	0.030	0.019	0.0008
Count	4	4	4	4	4	4	4
High	4.4	203.0	6.9	160.0	0.030	0.022	0.0009
Low	3.7	137.0	6.8	110.0	0.019	0.016	0.0006
Mean	4.1	161.3	6.9	135.0	0.025	0.018	0.0008
High Limit	11.0		8.5	309	0.469	1.000	0.0150
Low Limit			6.5				
Lim Ex	0	0	0	3	0	0	0
Frequency	0%	0%	0%	75%	0%	0%	0%
10x Lim Ex	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%

SR-15 May Lake

Month	DOC	hard	pHF	SO4	Ra	Ва	U
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L
2022-05	3.4	36.9	6.5	25.0	0.042	0.062	<0.0005
2022-09	3.6	41.3	7.1	25.0	0.063	0.067	<0.0005
Count	2	2	2	2	2	2	2
High	3.6	41.3	7.1	25.0	0.063	0.067	< 0.0005
Low	3.4	36.9	6.5	25.0	0.042	0.062	< 0.0005
Mean	3.5	39.1	6.8	25.0	0.053	0.065	<0.0005
High Limit			8.5	218	0.469	1.000	0.0150
Low Limit			6.5				
Lim Ex	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%
10x Lim Ex	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%

SR-16 Fox Creek @ Hwy 108

Month	DOC	hard	pHF	SO4	Ra	Ва	Co	Fe	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-02	14.0	9.9	5.3	0.6	<0.005	0.009	<0.0005	1.29	
2022-05	10.5	5.3	5.7	0.5	< 0.005	0.004	< 0.0005	0.68	
2022-08	14.7	9.2	5.6	0.2	< 0.005	0.007	0.0007	1.28	
2022-11	13.7	8.9	6.1	0.4	0.007	0.008	<0.0005	0.41	
Count	4	4	4	4	4	4	4	4	
High	14.7	9.9	6.1	0.6	0.007	0.009	0.0007	1.29	
Low	10.5	5.3	5.3	0.2	< 0.005	0.004	< 0.0005	0.41	
Mean	13.2	8.3	5.7	0.4	0.005	0.007	0.0006	0.91	
High Limit			8.5	128.0	0.469	1.000	0.0025	2.49	
Low Limit			5.3						
Lim Ex	0	0	0	0	0	0	0	3	
Frequency	0%	0%	0%	0%	0%	0%	0%	75%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	Mn	U
	mg/L	mg/L
2022-02	0.038	<0.0005
2022-05	0.019	< 0.0005
2022-08	0.051	< 0.0005
2022-11	0.041	<0.0005
Count	4	4
High	0.051	< 0.0005
Low	0.019	< 0.0005
Mean	0.037	<0.0005
High Limit	0.841	0.0150
Lim Ex	0.041	0.0100
Frequency	0%	0%
10x Lim Ex	0	0
Frequency	0%	0%

SR-17 Unnamed Creek Drain Lake 3 @ Hwy 108

Month	DOC	hard	pHF	SO4	Ra	Ва	Co	Fe	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-02	8.3	10.6	6.2	1.9	<0.005	0.020	0.0013	1.25	
2022-05	8.0	9.8	6.6	2.4	< 0.005	0.017	< 0.0005	0.42	
2022-08	8.6	12.3	6.0	1.2	< 0.005	0.022	0.0013	1.77	
2022-11	9.8	11.3	5.5	2.5	<0.005	0.016	0.0009	0.60	
Count	4	4	4	4	4	4	4	4	
High	9.8	12.3	6.6	2.5	<0.005	0.022	0.0013	1.77	
Low	8.0	9.8	5.5	1.2	<0.005	0.016	<0.0005	0.42	
Mean	8.7	11.0	6.1	2.0	<0.005	0.019	0.0010	1.01	
High Limit			8.5	128.0	0.469	1.000	0.0025	2.49	
Low Limit	•	•	5.3	•		•	•	•	
Lim Ex	0	0	0	0	0	0	0	3	
Frequency	0%	0%	0%	0%	0%	0%	0%	75%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	
Month	Mn	U							
	mg/L	mg/L							
2022-02	0.074	<0.0005							
2022-05	0.031	< 0.0005							
2022-08	0.079	<0.0005							
2022-11	0.058	< 0.0005							
Count	4	4							
High	0.079	<0.0005							
Low	0.031	<0.0005							
Mean	0.060	<0.0005							
High Limit	0.841	0.0150							
Lim Ex	0	0							
Frequency	0%	0%							
10x Lim Ex	0	0							
Frequency	0%	0%							

SR-18 Jim Christ Lake Outlet

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	Mn	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-05	4.9	9.6	7.0	3.1	<0.005	0.043	0.04	0.015	
2022-11		11.8	7.0	5.2	<0.005			0.014	
Count	2	2	2	2	2	2	2	2	
High	4.9	11.8	7.0	5.2	< 0.005	0.043	0.04	0.015	
Low	4.9	9.6	7.0	3.1	< 0.005	0.043	0.04	0.014	
Mean	4.9	10.7	7.0	4.2	<0.005	0.043	0.04	0.015	
High Limit Low Limit	11.0		8.5 6.5	128.0	0.469	1.000	0.76	0.841	
Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	U
	mg/L
2022-05	<0.0005
2022-11	<0.0005
Count	2
Count	2
High	<0.0005
Low	<0.0005
Mean	<0.0005
High Limit	0.0150
Lim Ex	0
Frequency	0%
10x Lim Éx	0
Frequency	0%

SR-19 Inlet to Elliot Lake

Month	DOC	hard	pHF	SO4	Ra	Ва	Fe	Mn	
	mg/L	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L	
2022-02	6.2	18.5	6.8	2.7	<0.005	0.024	0.33	0.027	
2022-05	5.3	15.3	6.9	2.7	< 0.005	0.021	0.39	0.068	
2022-08	5.1	17.0	7.0	2.5	< 0.005	0.025	0.69	0.084	
2022-11	5.4	15.5	6.7	3.0	<0.005	0.022	0.34	0.049	
Count	4	4	4	4	4	4	4	4	
High	6.2	18.5	7.0	3.0	<0.005	0.025	0.69	0.084	
Low	5.1	15.3	6.7	2.5	<0.005	0.021	0.33	0.027	
Mean	5.5	16.6	6.9	2.7	<0.005	0.023	0.44	0.057	
High Limit Low Limit	11.0		8.5 6.5	128.0	0.469	1.000	0.76	0.841	
Lim Ex	0	0	0	0	0	0	1	0	
Frequency	0%	0%	0%	0%	0%	0%	25%	0%	
10x Lim Ex	0	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	

Month	U
	mg/L
2022-02	<0.0005
2022-05	<0.0005
2022-08	<0.0005
2022-11	<0.0005
Count	4
Count	4
High	<0.0005
Low	<0.0005
Mean	<0.0005
High Limit	0.0150
Lim Ex	0
Frequency	0%
10x Lim Ex	0
	0

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station D-4

YEAR		pHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Mn ⁵ (mg/L)	Hardness (mg/L)
Assessment Criteria ¹	Wetland and lake benchmarks	6.5	128.0		0.469	0.0150	1.000		0.841	ı
	Wetland benchmark 2	5.3						2.49		
	Lake benchmark ³							0.76		
MDL 4		0.1	0.1		0.005	0.0005	0.005	0.02	0.002	0.05
2018		6.7	3.4		< 0.007	< 0.0005	0.012	0.04	0.014	9.3
2019		7.0	3.3		< 0.007	< 0.0005	0.014	0.04	0.018	8.9
2020		8.9	3.0	2.9	< 0.007	< 0.0005	0.013	0.04	0.014	8.9
2021		7.0	2.8	2.9	0.005	< 0.0005	0.011	0.02	0.009	8.9
2022		6.7	3.0	2.8	< 0.005	< 0.0005	0.013	0.06	0.019	8.6

Votes.

¹ Assessment criteria as per Table S.1. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01,

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness Variation in number of significant figures reflect MDL's at the time of reporting. In 2006. Iaboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-18

YEAR		PHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Mn ⁵ (mg/L)	Hardness (mg/L)
Assessment V Criteria 1 b	Assessment Wetland and lake Criteria 1 benchmarks	6,5	128.0		0.469	0.0150	1.000		0.841	I
>	Wetland benchmark ²	5.3						2.49		
	Lake benchmark ³							92.0		
MDL 4		0.1	0.1	***************************************	0.005	0.0005	0.005	0.02	0.002	0.50
2018		6.8	4.5		< 0.007	< 0.0005	0.045	0.04	0.011	6.6
2019		6.9	3.6		< 0.007	< 0.0005	0.051	90.0	0.017	10.1
2020		6.9	3.5	5.4	< 0.007	< 0.0005	0.045	0.07	0.017	9.6
2021		8.9	3.5	5.1	0.006	< 0.0005	0.046	0.07	0.035	8. 8.
2022		7.0	4.2	4.9	< 0.005	< 0.0005	0.430	0.04	0.015	10.7

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Assessment criteria as per Table S.1. Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWVMP, SAMP and TOMP (Minnow, 2019)

Sulphate and manganese criteria taken from Table S.2, Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-19

YEAR	AND THE PROPERTY OF THE PROPER	PHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mq/L)	Fe (ma/L)	Min ⁵ (ma/L)	Hardness (mg/L)
Assessment Criteria ¹	Assessment Wetland and lake Criteria benchmarks	6.5	128.0		0.469	0.0150	1.000	· ·	0.841	,
	Wetland benchmark 2	5.3						2.49		
	Lake benchmark ³							0.76		
MDL ⁴	TO PERSONAL AND A DESCRIPTION	0.1	0.1		0.005	0.0005	0.005	0.02	0.002	0.50
2018		6.7	3.2		0.009	< 0.0005	0.025	0.35	090.0	17.9
2019		6.8	2.9		< 0.007	< 0.0005	0.023	0.30	0.039	14.7
2020		7.0	2.6	4.8	< 0.007	< 0.0005	0.022	0.38	0.060	15.9
2021		7.0	2.5	5.5	0.007	< 0.0005	0.020	0.39	0.056	14.5
2022		6.9	2.7	5.5	< 0.005	< 0.0005	0.023	0.44	0.057	16.6
		THE PERSON AND ADDRESS OF THE PERSON AND ADD		The state of the s						

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Assessment criteria as per Table S.1, Appendix S. Cycle 5 State of the Environment Report for the SRWMP. SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 5.2. Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-16

YEAR		HH _c	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Mn ⁵ (mg/L)	Hardness (mg/L)
Assessment Criteria 1	Assessment Wetland and lake Criteria benchmarks	6.5	128.0		0.469	0.0150	1.000		0.841	ı
	Wetland benchmark ² Lake benchmark ³	5.3						2.49		
MDL 4	THE PROPERTY OF THE PROPERTY O	0.1	0.1		0.005	0.0005		0.02	0.002	0.5
2018		5.4	1.2		< 0.007		0.008	99.0	0.043	9.0
2019		5.8	1.1		< 0.007	٧	0.007	0.80	0.034	7.7
2020		6.2	8.0	12.6	< 0.007	< 0.0005	0.008	1.12	0.061	7.9
2021		5.9	9.0	13.3	< 0.005	< 0.0005	0.007	0.94	0.036	7.5
2022		5.7	0.4	13.2	0.005	< 0.0005	0.007	0.91	0.037	8.3

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Assessment criteria as per Table S.1, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland/stream stations: M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWWR. SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWMP. SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-17

YEAR	ANALAS AN	рНЕ	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Min ⁵ (mg/L)	Hardness (mg/L)
Assessment Criteria 1	Wetfand and lake benchmarks	6.5	128.0		0.469	0.0150	1.000		0.841	l
	Wetland benchmark ² Lake benchmark ³	5.3						2.49		
MDL 4		0.1	0.1		0.005	0.0005	0.005	0.02	0.002	0.5
2018	AND THE PROPERTY OF THE PROPER	5.5	2.4		0.007	< 0.0005	0.027	1.08	0.081	14.2
2019		6.0	2.5		< 0.007	< 0.0005	0.021	0.59	0.039	9.7
2020		6.2	1.8	8.6	< 0.007	< 0.0005	0.020	1.63	0.074	10.7
2021		6.1	1.6	8.7	0.007	< 0.0005	0.016	0.97	0.057	0.6
2022		6.1	2.0	8.7	< 0.005	< 0.0005	0.019	1.01	0.060	11.0

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, Iaboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

¹ Assessment criteria as per Table S.1. Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland/stream stations: M-01, DS-18. SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWMP. SAMP and TOMP (Minnow. 2019)

⁵ Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station D-5

YEAK		FLOW (L/s)	보	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Mn ³ (mg/L	Hardness (mg/L)
Assessment Criteria	Assessment Wetland and lake Criteria benchmarks		6.5	128.0		0.469	0.0150	1.000		0.841	net Dawn and Arthred
	Wetland benchmark ²		5.3						2.49		
MDL ⁴			0.1	0.1		0.005	0.0005	0.005	0.02	0.002	0.5
2018		2065.0	6.7	13.8		0.073	0.0015	0.106	0.07	0.039	26.6
2019		3498.0	6.9	10.3		0.041	0.0010	0.051	0.05	0.024	19.4
2020		3381.7	7.0	10.6	3.1	0.044	0.0013	0.068	0.08	0.028	20.3
2021		1234.5	6.9	8.6	3.4	0.052	0.0011	0.068	0.08	0.025	20.9
2022		2133.3	6.8	16.4	3.7	0.063	0.0011	0.072	0.20	0.032	29.5

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, Jaboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

¹ Assessment criteria as per Table S.1, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow. 2021)

² Benchmark applies to wetland stations; M-01, DS-18, SC-01,

³ Benchmark applies to lake stations; D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWIMP. SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station D-6

YEAR))	FLOW (L/s)	pHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Mn ⁵ (mg/L)	Hardness (mg/L)
Assessment Criteria 1	Assessment Wetland and lake Criteria benchmarks		6.5	218.0		0.469	0.0150	1.000		0.841	t
	Wetland benchmark ²		5.3						2.49		
MDL 4			0.1	0.1		0.005		0.005	0.02	0.002	0.5
2018		129.3	9.9	34.8		0.015	< 0.0005	0.017	0.82	0.481	49.0
2019		164.7	8.9	22.9		600.0	< 0.0005	0.018	0.82	0.370	35.9
2020		20.0	6.9	21.0	4.2	< 0.007 <	< 0.0005	0.014	0.37	0.146	31.2
2021		10.0	6.8	27.8	4.3	600.0	< 0.0005	0.014	0.20	0.099	37.2
2022		32.1	9.9	28.0	4.3	V	0.005 < 0.0005	0.013	0.16	0.101	38.3

dependent.
Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Assessment criteria as per Table S.1, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland/stream stations; M-01, DS-18, SC-01,

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWIMP. SAMP and TOMP (Minnow. 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness

2022 Serpent River Watershed Water Quality Monitoring Results Rio Algom Limited and Denison Mines Inc. Five Year Annual Average Station BSD2

TEAK		pHF	S04 ⁵	DOC	Ra	n ,	Ва	Fe	Mn ⁵	Hardness
٠			(mg/L)	(mg/L)	(Bd/L)	(mg/L)	(mg/L	(mg/L)	(mg/L)	(mg/)
Assessment 1 Criteria 1 1	Assessment Wetland and lake Criteria benchmarks	6.5	218.0		0.469	0.0150	1.000		0.841	ī
	Wetland benchmark 2	5.3						2.49		
_	Lake benchmark ³							0.76		
MDL ⁴		0.1	0.1		0.005	0.0005	0.005	0.05	0.002	0.5
2018		6.5	15.0		0.007	< 0.0005	0.012	0.17	0.088	22.8
2019		6.9	12.4		< 0.007	> 0.0005	_	0.17	0.074	20.1
2020		6.8	20.0	4.3	< 0.007	٧		0.35	0.162	31.4
2021		6.8	33.0	6.4	900.0	< 0.0005	_	0.17	0.098	
2022		6.5	27.0	4.0	< 0.005	< 0.0005	0.013	0.18	0.087	38.8

¹ Assessment criteria as per Table S. 1. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01,

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, Jaboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005). Bold indicates exceedance of evaluation criteria value

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station FBD2

Assessment Wetland and lake Criteria benchmarks		<u>.</u>	sO4 (mg/L	(mg/L)		(Bq/L)	U (mg/L)	Ba (mg/L)	- E	re (mg/L)	(mg/L)	Hardness mg/L
17 - 7 4 4	nd and lake narks	6.5	218.0		0	0.469	0.0150	1.000			0.841	1
wetlan	Wetland benchmark ²	5.3							- 1	2.49		
Lake b	Lake benchmark ³								-	0.76		
MDL 4		0.1	0.1		0	0.005	0.0005	0.005	_	0.02	0.002	0.5
2018		5.6	> 0.1		0 ×	0.007	< 0.0005	< 0.005	\ \ \	0.02	< 0.002	< 0.5
2019		5.8	> 0.1		v	0.007	< 0.0005	< 0.005	v	0.02	< 0.002	< 0.5
2020		6.0	< 0.1 ×	0.5	v	0.007	< 0.0005	< 0.005	v	0.02	< 0.002	< 0.5
2021		5.7	< 0.2 <	0.5	v	0.005	< 0.0005	< 0.005	v	0.02	< 0.002	< 0.5
2022		0.9	< 0.1 <	0.5	0 V	0.005	< 0.0005	< 0.005	v	0.02	0.003	<0.5

'Assessment criteria as per Table S.1. Appendix S, Cycle 5 State of the Environment Report for the SRWMP. SAMP and TOMP (Minnow. 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWIMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station DS-18

YEAR		FLOW (L/s)	pHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Hardness (mg/L)
Assessment Wetland and lake Criteria benchmarks	O		6.5	308.0		0.459	0.0150	1.000		ı
Wetland benchmark Lake benchmark ³	nark?		5.3						2.49	
MDL 4			0.1	0.1		0.005	0.0005	0.005	0.02	0.5
2018		240.9	7.1	56.8		0.152	0.0008	0.021	0.28	80.2
2019		248.0	7.1	43.2		0.110	0.0008	0.019	0.26	78.0
2020		356.4	7.1	53.0	2.5	0.105	0.0010	0.021		70.1
2021		278.6	7.1	44.3	2.8	0.133	0.0009	0.027	0.16	58.4
2022		128.2	7.0	45.8	2.6	0.100	0.0011	0.019	0.17	63.4

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements. as per Cycle 2 Interpretive Report (Minnow 2005).

^{&#}x27; Assessment criteria as per Table S.1, Appendix S. Cycle 5 State of the Environment Report for the SRWIMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01,

³ Benchmark applies to lake stations: D-5, D-6, Q-09, O-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station M-01

YEAR		рНГ	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/	Fe Hardness (mg/L)
Assessment \ Criteria 1 1	Assessment Wetland and lake Criteria benchmarks	6.5	218.0		0.469	0.0150	1.000		ı
	Wetland benchmark ² Lake benchmark ³	5.2						2.69	
MDL 4		0.1	0.1		0.005	0.0005	0.005	0.02	0.5
2018		6.7	8.9		0.015	0.0020	0.015	0.78	30.0
2019		6.7	8.4		0.017	0.0027	0.016	0.78	31.2
2020		6.8	7.2	4.9	0.029	0.0024	0.018	1.576	35.4
2021		6.6	8.1	5.1	0.028	0.0021	0.016	0.92	34.1
2022		6.7	9.1	0.9	0.019	0.0030	0.016	0.95	35.8

Assessment criteria as per Table S.1, Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01.

Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20. SR-01. SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program within the sample during periods of low flow. The remaining iron concentrations throughout the year were considerably lower (ranging from 0.22 mg/L to 0.51 mg/L) and more typical of expected values when flow is generally higher. This data can be found in the SRWMP Annual Water Quality Report 2020 (RAL, DMI, 2021). ⁶ The 2020 annual average iron concentration at M-01 appears elevated, but is attributed to a historic seasonal spike (5.09 mg/L) in August when persistent upstream beaver activity was observed during a period of warmer, drier conditions and lower water levels. Iron concentrations are generally influenced by the particulate matter requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Bold indicates exceedance of evaluation criteria value

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station BSR5

YEAR		pHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Hardness (mg/L)
Assessment Criteria 1	Wetfand and lake benchmarks	6.5	218.0		0.469	0.0050	1.000	!	, 1
	Wetland benchmark ² Lake benchmark ³	5.3						2.49	
MDL 4		0.1	0.1		0.005	0.0005	0.005	0.02	0.5
2018		6.8	10.1		0.018	0.0024	0.015	0.43	33.1
2019		7.0	6.8 8.0		0.016	0.0023	0.014	0.32	31
2020		6.8	ත. හ	4.6	0.020	0.0026	0.015	0.31	31.4
2021		6.7	8.3	9.4	0.018	0.0021	0.014	0.47	31.9
2022		6.5	8.8	6.0	0.017	0.0026	0.014	0.58	33.5

Motor

Assessment criteria as per Table S.1. Appendix S. Cycle 5 State of the Environment Report for the SRWMP. SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations; M-01, DS-18, SC-01,

² Benchmark applies to lake stations; D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWIMP, SAMP and TOMP (Minnow, 2019)

Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent. Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Bold indicates exceedance of evaluation criteria value

2022 Serpent River Watershed Water Quality Monitoring Results Rio Algom Limited and Denison Mines Inc. Five Year Annual Average Station FBR5

YEAR	The same of the sa	PHF		SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Hardness (mg/L)
Assessment Criteria ¹	Assessment Wetland and lake Criteria benchmarks	6.5		218.0		0.469		1.000		1
	Wetland benchmark ²	5.3							2.49	
	Lake benchmark ³								0.76	
MDL⁴		0.1		0.1		0.005	5 0.0005	0.005	0.02	0.5
2018		5.8	٧	0.1		< 0.007	7 < 0.0005	< 0.005	< 0.02	< 0.5
2019		6.0	V	0.1		< 0.007		< 0.005	< 0.02	< 0.5
2020		5.9	٧	0.1	5.0	< 0.007	2000:0 > 2	< 0.005	< 0.02	< 0.5
2021		6.0	٧	0.1	5.0	> 0.006		< 0.005	< 0.02	< 0.5
2022	2022	6.3	٧	0.1	3.0	< 0.005	5 < 0.0005	< 0.005	< 0.02	<0.5

as per Cycle 2 Interpretive Report (Minnow 2005).

¹ Assessment criteria as per Table S.1. Appendix S. Cycle 5 State of the Environment Report for the SRWIMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations; M-01, DS-18, SC-01,

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S, Cycle 5 State of the Environment Report for the SRWIMP. SAMP and TOMP (Minnow, 2021). Parameters are hardness Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, Jaboratory reported MDL's were standardized to achieve consistency and meet program requirements,

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station Q-09

YEAR	THE STATE OF THE S	FLOW	pHF	SO4 5	DOC	Ra	n	Ba	Hardness
		(F/S)		(mg/L)	(mg/L)	(Bq/L)	(mg/L)	(mg/L)	
Assessment Criteria ¹	Assessment Wetland and lake Criteria benchmarks		6.5	218.0		0.469	0.0150	1.000	
	Wetland benchmark 2		5.3						
	Lake benchmark ³								
MDL 4			0.1	0.1		0.005	0.0005	0.005	0.5
2018	A MANAGA AND AND AND AND AND AND AND AND AND AN	2160.00	6.7	50.5		0.100	0.0022	0.119	9.99
2019		3620.00	6.9	47.3		0.051	0.0015	0.064	43.5
2020		3523.33	6.9	34.0	3.8	990.0	0.0019		45.6
2021		1318.25	6.8	46.3	3.9	0.073	0.0015	0.077	55.7
2022		2234.50	6.6	65.5	3.9	0.067	0.0018	0.077	81.2

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Assessment criteria as per Table S.1. Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP. SAMP and TOMP (Minnow, 2021). Parameters are hardness

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station Q-20

YEAR		FLOW	PHF	SO4°	DOC		Ra	ח	Ва	Hardness
•		(L/s)		(mg/L)	(mg/L)		(Bq/L)	(mg/L)	(mg/L)	(mg/L)
Assessment Wetland Criteria benchma	Wetland and lake benchmarks		6.5	218.0			0.469	0.0150	1.000	
	Wetland benchmark 2		5.3							
	Lake benchmark *									
MDL 4			0.1	0.1			0.005	0.0005	0.005	
2018		10.0	9.9	19.0		v	0.007	< 0.0005	0.019	38.2
2019		4.0	7.3	19.0			0.008	< 0.0005	0.020	39.4
2020		10.0	8.9	17.0	2.3	٧	0.007	< 0.0005	0.019	35.7
2021		1.0	7.0	18.0	2.7	v	0.005	< 0.0005	0.018	35.4
2022		4.0	6.9	18.0	2.6	v	0.005	< 0.0005	0.018	36.1
						-		AND DESCRIPTION OF THE PROPERTY.		TOTAL CONTRACTOR OF THE PARTY O

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005),

Assessment criteria as per Table S.1, Appendix S. Cycle 5 State of the Environment Report for the SRWIMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01.

³ Benchmark applies to lake stations; D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08,

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWMP. SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SC-01

Assessment W.		PHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Fe (mg/L)	Hardness (mg/L)
Criteria be	Assessment Wetland and lake Criteria benchmarks	6.5	128.0		0.469	0.0150	1.000		
La V	Wetfand benchmark ² Lake benchmark ³	5.3						2.49	
MDL 4		0.1	0.1		0.005	0.0005	0.005	0.02	0.5
2018	ANALYSIA MARKATAN MAR	6.6	18.0		600.0	< 0.0005	0.011	0.14	31.5
2019		7.3	16.0		< 0.007		0.011	0.10	29.1
2020		7.0	16.0	4.6	0.012	< 0.0005	600.0	0.13	25.3
2021		7.0	18.0	4.5	0.015	< 0.0005	0.011	0.13	30.1
2022		6.6	26.0	7.8	0.014	< 0.0005	0.014	0.17	37.7

¹ Assessment criteria as per Table S.1. Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow 2021).

² Benchmark applies to wetland stations; M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-06

YEAR		FLOW (L/s)	pHF	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L)	Ba (mg/L)	Hardness (mg/L)
Assessment Wetland Criteria benchma	Wetland and lake benchmarks		6.5	218.0		0.469	0.0150	1.000	
	Wetland benchmark ² Lake benchmark ³		5.3						
MDL. 4	THE		0.1	0.1		0.005	0.0005	0.005	0.5
2018		515.8	7.0	30.2		0.100	0.0006	0.682	44.7
2019		803.5	7.2	28.0		0.057	0.0006	0.312	36.7
2020		610.2	7.2	26.0	3.2	0.053	0.0005	0.148	36.9
2021		404.8	7.1	23.5	3.2	0.046	0.0005	0.138	36.1
2022		123.5	6.7	23.0	3.0	0.041	0.0005	0.124	35.0

Variation in number of significant figures reflect MDL's at the time of reporting, in 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Assessment criteria as per Table S.1. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-15

YEAR	THE	pHF	SO45	DOC	Ra	כ	Ва	Hardness
			(mg/L)	(mg/L)	(Bq/L)	(mg/L)	(mg/L)	(mg/L)
Assessment Criteria 1	Wetland and lake benchmarks	6.5	218.0		0.469	0.0050	1.000	
	Wetland benchmark ² Lake benchmark ³	5.3						
MDL 4		0.1	0.1		0.005	0.0005	0.005	0.5
2018		7.1	30.3		0.058	< 0.0005	0.213	44.5
2019		7.2	27.0		0.049	< 0.0005	0.146	39.0
2020		7.2	27.0	3.3	0.044	< 0.0005	0.103	40.6
2021		7.0	25.0	3.2	0.047	< 0.0005	0.087	42.2
2022		6.8	25.0	3.5	0.053	< 0.0005	0.065	39.1
								CAT CATCALLAND

Assessment criteria as per Table S.1. Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations; M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2. Appendix S, Cycle 5 State of the Environment Report for the SRWMP. SAMP and TOMP (Minnow, 2021). Parameters are hardness dependent.

Variation in number of significant figures reflect MDL's at the time of reporting, in 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Bold indicates exceedance of evaluation criteria value

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-01

Assessment Wetla Criteria bench		Į.	SO4 -		Ra	>	Ba	Hardness
			(mg/L)	(mg/L)	(Bq/L)	(mg/L)	(mg/L)	(mg/L)
14-794	Wetland and lake benchmarks	6.5	218.0		0.469	0.0150	1.000	ı
wells	Wetland benchmark 2	5.3						
Lake	ake benchmark ³.							
MDL 4		0.1	0.1		0.005	0.0005	0.005	0.5
2018		6.7	29.0		0.017	0.0011	0.034	35.4
2019		7.0	25.0		0.031	0.0011	0.039	36.6
2020		6.8	24.0	3.4	0.029	0.0012	0.042	34.3
2021		6.9	26.0	3.0	0.027	0.0011	0.041	28.9
2022		6.4	25.0	3.1	\$.00 mm	0.0010	0.042	37.8

Assessment criteria as per Table S.1, Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow. 2021)

² Benchmark applies to wetland stations; M-01, DS-18, SC-01.

³ Benchmark applies to lake stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2, Cycle 5 Study Design for the SRWMP. SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWIMP, SAMP and TOMP (Minnow, 2021). Parameters are hardness

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

Bold indicates exceedance of evaluation criteria value

Rio Algom Limited and Denison Mines Inc. 2022 Serpent River Watershed Water Quality Monitoring Results Five Year Annual Average Station SR-08

YEAR		PH F	SO4 ⁵ (mg/L)	DOC (mg/L)	Ra (Bq/L)	U (mg/L) (Ba (mg/L)	Hardness (mg/L)
Assessment Criteria 1	Wetland and lake benchmarks	6.5	309		0.469	0.0150	1.000	ı
	Wetland benchmark ² Lake benchmark ³	5.3						
MDL 4	TO THE PROPERTY OF THE PROPERT	0.1			0.005	0.0005	_	0.5
2018		6.8	137.5		0.028	0.0007	0.019	184.0
2019		6.8	130.0		0:030	0.0006	0.018	164.0
2020		6.8	140.0	4.0	0.029	0.0008	0.019	173.8
2021		7.1	155.0	5.3	0.030	0.0009	0.019	192.5
2022		6.9	135.0	4.1	0.025	0.0008	0.018	161.3

Variation in number of significant figures reflect MDL's at the time of reporting. In 2006, laboratory reported MDL's were standardized to achieve consistency and meet program requirements, as per Cycle 2 Interpretive Report (Minnow 2005).

¹ Assessment criteria as per Table S.1, Appendix S. Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

² Benchmark applies to wetland stations: M-01, DS-18, SC-01.

³ Benchmark applies to take stations: D-5, D-6, Q-09, Q-20, SR-01, SR-06, SR-08.

⁴ Method Detection Limits as per Table 6.2. Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

⁵ Sulphate and manganese criteria taken from Table S.2, Appendix S. Cycle 5 State of the Environment Report for the SRWIMP, SAMP and TOMP (Minnow, 2021), Parameters are hardness dependent.