# **Denison Mines**

# 2017 OPERATING CARE & MAINTENANCE ANNUAL REPORT Denison Mines Inc.

Submitted to the Canadian Nuclear Safety Commission March 29, 2018

# **Denison Mines**

Denison Mines Inc. 1 Horne Walk, Suite 200 Elliot Lake, ON P5A 2A5 Canada

> Tel: 705 848-9191 Fax: 705 848-4445

www.denisonmines.com

March 28, 2018

Dr. Karina Lange, Senior Project Officer Wastes and Decommissioning Division Canadian Nuclear Safety Commission 280 Slater Street P.O. Box 1046, Station B Ottawa, Ontario K1P 5S9

Dear Dr. Lange:

# RE: Denison Mines Inc. 2017 Operating Care and Maintenance Annual Report

Denison Mines Inc. is pleased to submit one copy of the Denison Mines Inc. Operating Care and Maintenance Annual Report for 2017. This document has been completed in accordance with: UMDL-Minemill-Denison.01/indf; and UMDL-Minemill-Stanrock.02/indf; and CofA No. 4-0067-74-766; CofA No. 4-0019-72-006; and CofA No. 4-034-76-006.

Yours truly,

Denison Mines Inc.

mitleure

Janet Lowe General Manager Enclosure <u>Distribution</u> Elliot Lake Joint Review Group 2017

| Environment and Climate Change<br>Canada<br>Jesica Moreno<br>Nuclear Coordinator – Energy,<br>Environment Protection Operations<br>Directorate –Ontario Region<br>4905 Dufferin Street<br>Toronto, Ontario M3H 5T4<br>Jesica.Moreno@canada.ca<br>416-739-4174 | Ministry of Northern Development and<br>Mines<br>Rob Purdon<br>Mine Rehabilitation Specialist<br>435 James Street South, Suite B002<br>Thunder Bay, ON P7E 6S7<br><u>Rob.H.purdon@ontario.ca</u><br>807-475-1197                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ministry of the Environment and Climate<br>Change<br>Kirk Crosson<br>Senior Environmental Officer - Sault Ste<br>Marie Area Office<br>70 Foster Drive Suite 110<br>Sault Ste Marie, ON P6A 6V4<br><u>Kirk.crosson@ontario.ca</u><br>705-942-6392              | Ministry of the Environment and Climate<br>Change<br>Ed Snucins<br>Surface Water Specialist Northern Region<br>199 Larch St., Suite 1201<br>Sudbury, Ontario P3E 5P9<br>ed.snucins@ontario.ca<br>705-564-3245                           |
| Ministry of Natural Resources and<br>Forestry<br>Jim Trottier<br>Management Biologist – Blind River Office<br>62 Queen Ave<br>PO Box 190<br>Blind River, ON POR 1B0<br>jim.trottier@ontario.ca<br>705-356-3018                                                | Ministry of Natural Resources and<br>Forestry<br>Karen Mikoliew<br>Senior Lands & Waters Technician - Sault<br>Ste Marie District<br>64 Church St.,<br>Sault Ste. Marie, ON P6A 3H3<br><u>Karen.Mikoliew@ontario.ca</u><br>705-941-5113 |
| Ministry of Labour<br>Jerry Wedzicha<br>Program Specialist – Mining Health and<br>Safety Program<br>Willet Green Miller Ctr Bldg B<br>933 Ramsey Lake Rd<br>Sudbury, ON P3E 6B5<br>jerry.wedzicha@ontario.ca<br>705-564-4109                                  | Ministry of Labour<br>Mike Kat<br>Ground Control Engineer – North Bay<br>159 Cedar St, Suite 301<br>Sudbury, ON P3E 6A5<br><u>mike.kat@ontario.ca</u><br>705-564-7166                                                                   |

# Additional Distribution 2017

| Canadian Nuclear Safety Commission<br>Dr. Karina Lange, Senior Project Officer<br>Wastes and Decommissioning Division<br>280 Slater Street<br>PO Box 1046, Station B<br>Ottawa, ON K1P 5S9<br>Karina.Lange@canada.ca<br>613-995-6535 | City of Elliot Lake<br>Mayor Dan Marchisella<br>City of Elliot Lake<br>45 Hillside Drive North<br>Elliot Lake, ON P5A 1X5<br><u>d.marchisella@city.elliotlake.on.ca</u><br>705-848-2287 ext 2126 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elliot Lake Public Library<br>Pearson Plaza<br>40 Hillside Drive South<br>Elliot Lake, ON P5A 1M7                                                                                                                                    | Serpent River First Nation<br>Chief Elaine Johnston<br>195 Village Road<br>Cutler, ON POP 1B0<br><u>ejohnston.srfn@ontera.net</u><br>705-844-2418                                                |
| <b>Township of the North Shore</b><br>Mayor Randi Condie<br>PO Box 108<br>Algoma Mills, ON POR 1A0<br>705-849-2213                                                                                                                   | Town of Spanish<br>Pam Lortie, Chief Administrative Officer<br>PO Box 70<br>8 Trunk Road<br>Spanish, ON POP 2A0<br>info@townofspanish.com<br>705-844-2300                                        |
| Denison Mines Inc.<br>David Cates<br>President & CEO<br>Dcates@denisonmines.com<br>416-979-1991                                                                                                                                      |                                                                                                                                                                                                  |

# **Table of Contents**

| 1       | Organiz   | zational Information                                                                 | 3    |
|---------|-----------|--------------------------------------------------------------------------------------|------|
|         | 1.1       | Board of Directors                                                                   | 3    |
|         | 1.2       | List of Officers                                                                     | 3    |
| 2       | Financi   | al Guarantees                                                                        | 3    |
| 3       | Licence   | e and Monitoring Program Modifications                                               | 4    |
| 4       | Method    | lology                                                                               | 4    |
|         | 4.1       | Health and Safety                                                                    | 4    |
|         | 4.2       | Water Quality Monitoring Program                                                     | 5    |
| 5       | Results   | and Discussion                                                                       | 8    |
|         | 5.1       | Health and Safety                                                                    | 8    |
|         | 5.2       | Water Quality Monitoring Program                                                     | .10  |
|         | 5.3       | Site Specific Maintenance and Operations Program                                     | .29  |
| 6       | Referen   | nces                                                                                 | . 37 |
| List of | Tables    |                                                                                      |      |
| Table   | 1.1       | Denison Mines Inc. Directors as of December 31, 2017                                 | 3    |
| Table   | 1.2       | Denison Mines Inc. Officers as of December 31, 2017                                  | 3    |
| Table   | 4.2.2     | Assessment Criteria and Data Quality Objectives                                      | 7    |
| Table   | 5.1.1     | Health & Safety Injury Statistics                                                    | 8    |
| Table   | 5.1.3.1   | Denison TMA-1 ETP Radon Progeny Monitoring Results 2017                              | 9    |
| Table   | 5.1.3.2   | Denison Lower Williams ETP Radon Progeny Monitoring Results 2017                     | 9    |
| Table   | 5.1.3.3   | Stanrock ETP Radon Progeny Monitoring Results 2017                                   | 9    |
| Table   | 5.2.1     | 2017 Surface Water Field Blank and Field Precision Data Summary                      | .12  |
| Table   | 5.2.1.1a  | Annual Average Concentrations ETP Influent (D-1)                                     | .13  |
| Table   | 5.2.1.1b  | Final Discharge at Stollery Settling Pond Outlet (D-2)                               | .14  |
| Table   |           | 2017 TMA-1 Compliance with Discharge Limits at Final Point of Control (D-2)          | .16  |
| Table   | 5.2.1.2a  | Lower Williams ETP Influent (D-22)                                                   | .17  |
| Table   | 5.2.1.2b  | Lower Williams Final Discharge at Denison Access Road (D-3)                          | .18  |
|         | 5.2.1.2.1 | 2017 Lower Williams Compliance with Discharge Limits at Final Point of Control (D-3) |      |

Denison Mines Inc. 2017 Operating Care and Maintenance Annual Report

| Table 5.2.1.3a Stanrock Influent (DS-2)                                                                                                | 20 |
|----------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 5.2.1.3b Orient Lake Outlet Stanrock Final Point of Control (DS-4)                                                               | 21 |
| Table 5.2.1.3.1       2017 Stanrock Tailings Management Area Compliance with         Discharge Limits at Final Point of Control (DS-4) | 23 |
| Table 5.2.2         2017 Groundwater Field Blank and Field Precision Data Summary                                                      | 24 |
| Table 5.3.1.2.1       2017 TMA-1 Effluent Treatment Plant Flow Rates, Operating Days,         and Discharge Days                       | 31 |
| Table 5.3.2.2.1       2017 Lower Williams ETP Flow Rates, Operating Days, and         Discharge Days                                   | 33 |
| Table 5.3.3.2.1       2017 Stanrock ETP Flow Rates, Operating Days, and Discharge         Days       Days                              | 36 |
| List of Figures                                                                                                                        |    |

| Figure 5.2.2.3. 1 Sulphate, acidity, and iron concentrations at Station BH91 SG1A downstream of Dam A, 2013-2017 | 26 |
|------------------------------------------------------------------------------------------------------------------|----|
| Figure 5.2.2.3. 2 Sulphate, acidity, and iron concentrations at Station BH98-16A downstream of Dam B, 2013-2017  | 26 |
| Figure 5.2.2.3. 3 Sulphate, acidity, and iron concentrations at Station BH98-15A downstream of Dam C, 2013-2017  | 27 |
| Figure 5.2.3. 1 Acidity Concentrations at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-2017                          | 28 |
| Figure 5.2.3. 2 Iron Concentrations at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-<br>2017                         | 28 |
| Figure 5.2.3. 3 Sulphate Concentrations at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-2017                         | 29 |
| Figure 5.2.3. 4 pH at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-2017                                              | 29 |

# Table of Appendices

APPENDIX I Summary of Cycle 4 Changes

APPENDIX II Site Maps, Sampling Requirements

APPENDIX III Flagged Data & QA/QC Results

APPENDIX IV Water Quality Results

APPENDIX V Stanrock Un-named Pond Report

# **1** ORGANIZATIONAL INFORMATION

#### Licensee DENISON MINES INC. 1100-40 University Avenue Toronto, Ontario M5G 1T1

# 1.1 Board of Directors

Table 1.1 lists the names and titles of the Directors of Denison Mines Inc. as of December 31, 2017. All persons listed below may be contacted via the aforementioned licensee address.

Table 1.1Denison Mines Inc. Directors as of December 31, 2017

| Name                   | Office                                             |
|------------------------|----------------------------------------------------|
| David Cates            | Director, President and Chief<br>Executive Officer |
| Gabriel (Mac) McDonald | Director, Chief Financial<br>Officer               |

# 1.2 List of Officers

Table 1.2 lists the names and titles of the Officers of Denison Mines Inc. as of December 31<sup>st</sup>, 2017. All persons listed below may be contacted via the aforementioned licensee address.

# Table 1.2Denison Mines Inc. Officers as of December 31, 2017

| Name                   | Office                                             |
|------------------------|----------------------------------------------------|
| David Cates            | Director, President and Chief<br>Executive Officer |
| Gabriel (Mac) McDonald | Director and Chief Financial<br>Officer            |
| Amanda Willett         | Canadian Counsel and<br>Corporate Secretary        |
| Mary Jo Smith          | Director, Internal Audit                           |

# 2 FINANCIAL GUARANTEES

Federal and Provincial regulations which apply to the decommissioning programs of Denison Mines Inc. (Denison) in Elliot Lake require mine operators to provide adequate and secure resources to meet current and future responsibilities with respect to mine closure and long-term care and maintenance. All expenditures are funded through a reclamation trust fund where Denison is required to maintain a balance in the trust equivalent to six years of the estimated current annual costs. Sufficient funds are currently in the reclamation trust to meet all monitoring costs through 2023.

# 3 LICENCE AND MONITORING PROGRAM MODIFICATIONS

Denison Mines Inc. closed sites in Elliot Lake currently operate and are monitored within the scope of work outlined in UMDL-Minemill-Denison.01/indf and UMDL-Minemill-Stanrock.02/indf, as well as Certificate of Approval (C of A) No. 4-0067-74-766, C of A No. 4-0019-72-006, and C of A No. 4-034-76-006. No changes to these documents have been made in 2017.

There were approved changes/modifications to the Source Area Monitoring Program (SAMP) and the Tailings Operational Monitoring Program (TOMP) in 2015, which are presented in the *Cycle 4 Study Design for the Serpent River Water Management Program (SRWMP), SAMP and TOMP* (Minnow Environmental Inc.(Minnow), 2016). A summary of approved changes is provided in Appendix I.

# 4 METHODOLOGY

# 4.1 Health and Safety

# 4.1.1 Health and Safety Injury Statistics

Health and safety remains an important part of Denison Mines Inc. and practices to support this are consistently implemented to ensure safety in the workplace. Throughout 2017, training and education in matters relating to health and safety continued to be provided at monthly safety meetings and daily line-ups for Denison staff.

# 4.1.2 Gamma Dosimetry

Denison has continued to voluntarily participate in the gamma dosimetry program. The program applies to employees working in and around the licensed sites, which include the tailings management areas (TMAs). These workers are classified as Nuclear Energy Workers (NEWs). On occasion, sub-contractors may be issued visitor badges should the work involve specific earthworks projects over an extended period of time. The program does not apply to visitors visiting the sites or employees who do not actively work at the licensed sites.

The type of gamma dosimetry badges used are Optically Stimulated Luminescence (OSL) dosimeters, which have a wearing period of three months. Badges are issued in the first calendar month of the year and each quarter going forward. At the end of the wearing period, the dosimeters are sent to the Radiation Protection Bureau (RPB) Health Canada for processing. Denison's designate is responsible for reviewing the information, reporting any anomalies to workers, and maintaining the company records.

# 4.1.3 Radon Progeny Monitoring

Radon progeny monitoring at all Denison Effluent Treatment Plants (ETPs) is conducted on a quarterly basis. Radon is reported in Working Level (WL) units.

Radon level is measured by calculating alpha radiation from radon decay products. The sample is first collected on membrane filters with an air-sampling pump by walking through the entire ETP

over a 5-minute period, simulating a normal work routine. The ETP should be ventilated as per routine work practice before the walkthrough. Between forty to ninety minutes after the sample collection, alpha radiation is measured with an alpha counter. WL is then calculated based on the counts, count duration, sampling duration, sampling flow rate, decay factor, filter self-absorption value, background count, and efficiency factor.

The reportable action limit for radon exposure at all ETPs is 0.1 WL. To ensure radon levels stay below the reportable action limit, an internal investigation limit of 0.05 WL has been established to trigger a response whereby mitigating measures are implemented in order to ensure worker exposure to radon gas is reduced and controlled. Mitigating measures include but are not limited to the purchase of a radon fan and/or posting signage to employ longer ventilation time before ETP work begins.

The gamma and radon data are then used to calculate individual annual dose estimates for Care and Maintenance workers classified as NEWs. A worker dose estimate report is submitted annually to the Canadian Nuclear Safety Commission (CNSC) under separate cover.

# 4.2 Water Quality Monitoring Program

# 4.2.1 Program Requirements

Water quality monitoring requirements and criteria as per the aforementioned licences are fulfilled through the approved SAMP, TOMP, and SRWMP. Furthermore, approved recommendations for modifications to the SAMP and TOMP that were implemented in 2015 are presented in the *Cycle 4 Study Design* for the SRWMP, SAMP and TOMP (Minnow, 2016). A summary of approved changes is provided in Appendix I. It is important to note that water quality data included in this report from Denison monitoring locations are part of the Serpent River Watershed (SRW), which is a shared watershed with Rio Algom Limited (RAL) sites and their monitoring locations. In order to obtain a full understanding of the results that comprise this report, it should be read in conjunction with the SRWMP 2017 Annual Water Quality Report (RAL & Denison, 2018).

The 2017 SAMP and TOMP followed program requirements (sampling locations, frequencies, parameters, and analytical protocols) as recommended and approved in the *Cycle 4 Study Design for the SRWMP, SAMP and TOMP* (Minnow, 2016). Appendix II provides a map of the sampling stations included in the water quality program. Tables in Appendix II provide a brief description of each location, the sampling frequency, and parameters monitored as well as non-SAMP and TOMP regulatory drivers.

# 4.2.2 Data Quality Objectives

Targeted Method Detection Limits (MDLs) and Data Quality Objectives (DQOs) for SAMP and TOMP requirements are provided in Table 4.2.2 which were derived from the Cycle 4 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2016). Laboratory data quality assessment is provided in Section 3.1 of the *Serpent River Watershed Monitoring Program 2017 Annual Water Quality Report* (RAL & Denison, 2018).

# 4.2.3 Changes in Analytical Methods

There were no changes in analytical methodology in 2017.

# 4.2.4 Data Screening and Assessment Conventions

Data validation was conducted on SAMP and TOMP water quality data throughout the year. The data validation assessment-screening process flags all data points outside a rolling minimum 12 value mean  $\pm$  3 standard deviations.

As part of the TOMP, field quality assurance and quality control sampling was extended to the groundwater monitoring program in 2006. Data quality assessment involves monthly screening of field duplicate and field blank sample data against SAMP and TOMP DQOs found in Table 4.2.2. Detailed surface water and groundwater quality assurance and quality control (QA/QC) results are included in Appendix III of this report.

Laboratory analyses are contracted to Canadian Association of Laboratory Accreditation (CALA) certified laboratories. Laboratory QA/QC reports are provided in the *Serpent River Watershed Monitoring Program 2017 Annual Water Quality Report* (RAL & Denison, 2018).

Flagged data and short-term response plans are then reported monthly to the CNSC, Ministry of the Environment & Climate Change (MOECC) and Environment Canada (EC) in the monthly water quality report. Monthly data validation of flagged data for 2017 can be found in Appendix III.

Annual water quality reporting is designed to be concise and focused on the presentation of data in a standardized format with limited interpretation. Detailed statistical evaluation of water quality trends is included in the *Serpent River Watershed Cycle 4 (2010 to 2014) State of the Environment Report (SOE)* (Minnow, 2016). Data validation, as documented in Data Validation Procedures, ensures prompt response to upset conditions or unusual results. Appendix IV includes all 2017 water quality monitoring results with surface water results compared to Table 4.2.2 Assessment Criteria (AC) for the receiving environment. Five years of groundwater quality data are also included in Appendix IV. It should be noted that elevation measurements for Denison sites were changed from feet to meters in 2015.

# Table 4.2.2 Assessment Criteria and Data Quality Objectives

|                        |          | Assessement<br>Criteria <sup>1</sup> |                                |                                     |                         | Data Quality                 | / Objectives <sup>2</sup> |                         |                      |                                 |
|------------------------|----------|--------------------------------------|--------------------------------|-------------------------------------|-------------------------|------------------------------|---------------------------|-------------------------|----------------------|---------------------------------|
| Parameter              | Units    | Receiving<br>Environment<br>Criteria | Targeted<br>Detection<br>Limit | Minimum<br>Detectable<br>Difference | Field Blank<br>Criteria | Laboratory<br>Blank Criteria | Field Precision           | Laboratory<br>Precision | Laboratory<br>Spikes | Laboratory<br>Accuracy<br>(CRM) |
| Field Parameters       |          | 1                                    |                                |                                     |                         |                              | 1                         |                         |                      |                                 |
| Conductivity           | µmho/cm  | -                                    | 0.1                            | 0.05                                | -                       | -                            | 20%                       | -                       | -                    | -                               |
| Flow                   | L/s      | -                                    | method                         | method                              | -                       | -                            | -                         | -                       | -                    | -                               |
| рН                     | pH units |                                      | 0.1                            | 0.01 or 0.02                        | -                       | -                            | 20%                       | -                       | -                    | -                               |
| Lake                   |          | 6.5                                  |                                |                                     |                         |                              |                           |                         |                      |                                 |
| Wetland/stream         |          | 5.2                                  |                                |                                     |                         |                              |                           |                         |                      |                                 |
| Laboratory Paramet     | ers      |                                      |                                |                                     |                         |                              |                           |                         |                      |                                 |
| Acidity                | mg/L     | -                                    | 1.0                            | -                                   | 2                       | 2                            | 20%                       | 10%                     | -                    | 20%                             |
| Barium                 | mg/L     | 1.0                                  | 0.005                          | -                                   | 0.01                    | 0.01                         | 20%                       | 10%                     | 20%                  | 20%                             |
| Cobalt                 | mg/L     | 0.0025                               | 0.0005                         | -                                   | 0.001                   | 0.001                        | 20%                       | 10%                     | 20%                  | 20%                             |
| Iron                   | mg/L     |                                      |                                | -                                   | 0.04                    | 0.04                         | 20%                       | 10%                     | 20%                  | 20%                             |
| Lake                   |          | 0.49                                 | 0.02                           |                                     |                         |                              |                           |                         |                      |                                 |
| Wetland/stream         |          | 1.69                                 | 0.02                           |                                     |                         |                              |                           |                         |                      |                                 |
| Manganese <sup>3</sup> | mg/L     | 0.8                                  | 0.002                          | -                                   | 0.004                   | 0.004                        | 20%                       | 10%                     | 20%                  | 20%                             |
| Radium                 | Bq/L     | 1.0                                  | 0.005                          | -                                   | 0.01                    | 0.01                         | 20%                       | 20%                     | 20%                  | -                               |
| Sulphate <sup>3</sup>  | mg/L     | 128-429                              | 0.1                            | -                                   | 0.2                     | 0.2                          | 20%                       | 10%                     | 20%                  | 20%                             |
| TSS                    | mg/L     | -                                    | 1                              | -                                   | 2                       | -                            | 20%                       | 10%                     | -                    | 20%                             |
| Uranium                | mg/L     | 0.0150                               | 0.0005                         | -                                   | 0.001                   | 0.001                        | 20%                       | 10%                     | 20%                  | 20%                             |

#### Notes:

1. Table 4.5 Cycle 4 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2016)

2. Table 5.2 Cycle 4 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2016)

3. Sulphate and manganese criteria taken from Table B.1, Appendix B, Cycle 4 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2016). Parameters are hardness dependent.

# 5 RESULTS AND DISCUSSION

# 5.1 Health and Safety

# 5.1.1 Health and Safety Injury Statistics

Throughout 2017, training and education in health and safety related matters continued to be provided at monthly safety meetings and daily line-ups. All care and maintenance workers have Workplace Hazardous Materials Information System (WHMIS), Cardiopulmonary Resuscitation (CPR) and First Aid certification and have completed the Annual Radiation Safety training. Furthermore, many workers have additional training and certifications ensuring their qualification for specialty/specific tasks and jobs related to care and maintenance at the Elliot Lake sites. In 2015, there was one incident requiring medical aid. The individual required 12 stitches due to a laceration between the base of the thumb and wrist. In 2017, another incident required medical aid, which was the result of a foreign body to the right eye. Although both incidents required medical aid, there were no lost time accidents reported between 2015 and 2017 at the Elliot Lake sites (Table 5.1.1).

| Table 5.1.1 | Health & Safety Injury Statistics |  |
|-------------|-----------------------------------|--|
| Table 5.1.1 | Health & Safety Injury Statistics |  |

| Catagony            | 2017   |           | 2       | 016       | 2015   |           |  |
|---------------------|--------|-----------|---------|-----------|--------|-----------|--|
| Category            | Number | Frequency | Number  | Frequency | Number | Frequency |  |
| Medical Aid         | 1      | 4.1       | 0       | 0.0       | 1      | 3.9       |  |
| Lost Time           | 0      | 0.0       | 0       | 0.0       | 0      | 0.0       |  |
| Total               | 1      | 4.1       | 0       | 0.0       | 1      | 3.9       |  |
| Person-Hours Worked | 48,270 |           | 50, 417 |           | 51,312 |           |  |

\* Frequency is calculated as: Number / Person-hours Worked \* 200,000

# 5.1.2 Gamma Dosimetry

Dose reports will be provided to the Canadian Nuclear Safety Commission (CNSC) under separate cover.

# 5.1.3 Radon Progeny Monitoring

There were no radon progeny action level exceedances in 2017. Quarterly values for individual ETPs are reported in the following subsections.

# 5.1.3.1 Denison TMA-1 ETP

Quarterly radon progeny monitoring was conducted at the Denison TMA-1 in accordance with licence requirements. Radon progeny monitoring results for the year 2017 confirmed WLs remained well below the action level criteria of 0.10 WL (Table 5.1.3.1).

# Table 5.1.3.1 Denison TMA-1 ETP Radon Progeny Monitoring Results 2017

| Quarter | Radon (WL) |
|---------|------------|
| 1       | 0.0030     |
| 2       | 0.0165     |
| 3       | 0.0004     |
| 4       | 0.0003     |

# 5.1.3.2 Denison Lower Williams Lake ETP

Quarterly radon progeny monitoring was conducted at the LW ETP in accordance with licence requirements. Radon progeny monitoring results for the year 2017 confirmed WLs remained well below the action level criteria of 0.10 WL (Table 5.1.3.2).

Table 5.1.3.2 Denison Lower Williams ETP Radon Progeny Monitoring Results 2017

| Quarter | Radon (WL) |
|---------|------------|
| 1       | 0.0210     |
| 2       | 0.0063     |
| 3       | 0.0035     |
| 4       | 0.0059     |

# 5.1.3.3 Stanrock ETP

Quarterly radon progeny monitoring was conducted at the Stanrock ETP in accordance with licence requirements. Radon progeny monitoring results for the year 2017 confirmed WLs remained well below the action level criteria of 0.10 WL (Table 5.1.3.3).

# Table 5.1.3.3 Stanrock ETP Radon Progeny Monitoring Results 2017

| Quarter | Radon (WL) |
|---------|------------|
| 1       | 0.0132     |
| 2       | 0.0147     |
| 3       | 0.0046     |
| 4       | 0.0051     |

# 5.2 Water Quality Monitoring Program

The objective of the annual data review is to identify anomalous data and provide evaluation and short-term annual averages at select locations. Step changes and anomalies are identified by reviewing and compiling the last five years of annual average data for all SAMP and TOMP locations. Unusual individual results are routinely investigated in accordance with the *Water Quality Assessment and Response Plan*, which is included in Appendix A of the most recent SOE Report (Minnow, 2017).

# 5.2.1 Surface Water Quality

Appendix III contains detailed QA/QC results against DQOs while Appendix IV contains surface water station-specific annual data reported as monthly averages including annual statistics and comparison to AC, as per *The Cycle 4 Study Design for the SRWMP, SAMP and TOMP* (Minnow, 2016). Surface water quality data is reported monthly to the following regulatory bodies: CNSC, MOECC, and EC.

The sulphate field blank DQO of 0.2 mg/L was exceeded in one of 12 samples at 0.7mg/L. This concentration DQO exceedance was confirmed by repeat analysis. Although there is evidence of slight contamination, this location indicates elevated sulphate concentrations ranging from 140 mg/L to 320 mg/L in 2017. Therefore, the exceedance does not impact interpretation of sulphate water quality results. All other DQOs were met for all parameters in all samples in 2017.

Although the majority of the field blank DQOs were met, there were several discrepancies identified with field precision results in 2017. These anomalies were specific to samples collected in the months of February and April, when the standard precision DQO of 20% was exceeded for multiple parameters ranging from 21% to 71%. Laboratory repeat analysis in the primary and duplicate samples confirmed all the original results, suggesting the issue was not a laboratory error but rather an improper sample collection. Further investigation revealed that there was a slight deviation in standard sample collection protocols, which may have resulted in contamination between samples. All designated staff responsible for sample collection were retrained in proper sampling procedures, and several job observations were performed to ensure all protocols were being followed correctly. The retraining process proved effective in improvement of field precision results, as there was a much better agreement between primary and duplicate results following the retraining events.

The TSS field precision objective of 20% was exceeded in three of 12 samples all at 67%. The exceedances all occurred at a concentration of 2 mg/L and are indicative of the lack of precision at low TSS concentrations, and do not influence performance monitoring data integrity. The overall annual percent difference was 17%.

The radium field precision DQO of 20% was exceeded in five of 12 samples ranging from 21% to 67%. The exceedances were not a result of improper sampling protocol, but rather are consistent with the variability observed in radium concentrations. All results were within values typically observed at this location and therefore do not affect the interpretation of radium water quality results. The annual average percent difference was slightly above the DQO at 21%.

The barium field precision DQO of 20% was also exceeded slightly in three of 12 samples ranging from 27% to 71%. However, all results were within values typically observed at this location, and the annual average percent difference remained below the DQO at 14%.

The iron and manganese field precision DQOs, both 20%, each exceeded three times in 12 samples. Two of the exceedances for each parameter were likely the result of the issue described above. The third exceedance for each parameter was likely due to laboratory error. Repeat results

for both parameters in both the primary and duplicate samples did not confirm the original results. All results, however, fell within the typical range of values observed at this location, and therefore do not affect interpretation of water quality results. The annual average percent differences for iron and manganese were below the DQOs at 13% and 17% respectively.

Uranium and cobalt field precision DQOs (20% each) each exceeded once in 12 samples each at 21% and 63%, respectively. Precision was likely influenced by the same issues described above (uranium in April and cobalt in February). The annual average percent difference, however, remained well below DQOs at 5% and 8%, respectively.

A summary of 2017 surface water field blank and field precision data is presented in Table 5.2.1.

# Table 5.2.1 2017 Surface Water Field Blank and Field Precision Data Summary

|                             | pН  | TSS          | Hardness | SO4    | Ra(T)  | U            | Ва     | Со      | Fe     | Mn           |
|-----------------------------|-----|--------------|----------|--------|--------|--------------|--------|---------|--------|--------------|
|                             | P   | (mg/L)       | (mg/L)   | (mg/L) | Bq/L)  | (mg/L)       | (mg/L) | (mg/L)  | (mg/L) | (mg/L)       |
|                             |     | ( <b>U</b> ) |          |        | • •    | ( <b>U</b> ) |        |         |        | ( <b>U</b> ) |
| Field Blank Statistics      |     |              |          |        |        |              |        |         |        |              |
| Count                       | 12  | 12           | 12       | 12     | 12     | 12           | 12     | 12      | 12     | 12           |
| Average                     | 5.6 | <1           | <0.5     | 0.2    | 0.007  | <0.0005      | <0.005 | <0.0005 | <0.02  | <0.002       |
| Max                         | 6.6 | <1           | <0.5     | 0.7    | 0.009  | <0.0005      | <0.005 | <0.0005 | 0.04   | <0.002       |
| Min                         | 5.2 | <1           | <0.5     | <0.1   | <0.007 | <0.0005      | <0.005 | <0.0005 | <0.02  | <0.002       |
| Field Blank Exceedances     |     |              |          |        |        |              |        |         |        |              |
| Criteria <sup>1</sup>       |     | 2            | 1.0      | 0.2    | 0.01   | 0.001        | 0.01   | 0.001   | 0.04   | 0.004        |
| # Exceedances               |     | 0            | 0        | 1      | 0      | 0            | 0      | 0       | 0      | 0            |
| Field Duplicate Statistics  |     |              |          |        |        |              |        |         |        |              |
| Count                       | 12  | 12           | 12       | 12     | 12     | 12           | 12     | 12      | 12     | 12           |
| Average                     | 1%  | 17%          | 3%       | 2%     | 21%    | 5%           | 14%    | 8%      | 13%    | 17%          |
| Max                         | 1%  | 67%          | 17%      | 15%    | 67%    | 21%          | 71%    | 53%     | 42%    | 86%          |
| Min                         | 0%  | 0%           | 0%       | 0%     | 3%     | 0%           | 0%     | 0%      | 0%     | 0%           |
| Field Precision Exceedances |     |              |          |        |        |              |        |         |        |              |
| Criteria <sup>1</sup>       | 20% | 20%          | 20%      | 20%    | 20%    | 20%          | 20%    | 20%     | 20%    | 20%          |
| # Exceedances               | 0   | 3            | 0        | 0      | 5      | 1            | 3      | 1       | 3      | 3            |

<sup>1</sup> SAMP and TOMP field blank criteria taken from Table 5.2 of the Cycle 4 Study Design for SRWMP, SAMP and TOMP (Minnow, 2016)

Bold Indicates an exceedance of the Blank Criteria

#### 5.2.1.1 Denison TMA-1

Site-specific water quality monitoring at the Denison TMA-1 facility was completed in accordance with SAMP and TOMP design documents. Detailed water quality results are provided in Appendix IV.

TMA-1 basin performance is monitored at station D-1. Review of the TOMP dataset over the last five years indicates gradually increasing annual average radium concentrations, likely due to decreasing sulphate concentrations in the TMA (Table 5.2.1.1a). The elevated radium may be attributed to dissolution of the barium or calcium sulphate compound to which the radium is associated, whereby radium is released from the tailings (Minnow, 2016). Hardness continues to be measured internally for the purpose of assessing sulphate concentrations, and similar to sulphate, hardness concentrations appear to be decreasing over time. It is important to note that sulphate is hardness-dependent, in that the AC for sulphate increases as water hardness increases (Minnow, 2016). Therefore, taking into account the average hardness at this station, all sulphate annual averages meet the appropriate AC derived from British Columbia Ministry of Environment (BCMOE) guidelines for this station (Table 5.2.1.1a). Annual average uranium concentrations have exceeded AC in four out of the last five years of monitoring at this station. Barium, iron, and manganese concentrations have consistently remained low while acidity and cobalt remain near or below detection levels (Table 5.2.1.1a). Annual average pH values have consistently met AC each year, and have remained relatively neutral.

| PARAMETER<br>UNITS               | ACID<br>mg/L     | Hardness<br>mg/L | рН<br>pH units       | SO4<br>mg/L      | Ra<br>Bq/L       | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L             | Mn<br>mg/L       | U<br>mg/L          |
|----------------------------------|------------------|------------------|----------------------|------------------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Assessment Criteria <sup>A</sup> | -                | -                | 5.2/6.5 <sup>B</sup> | 309 <sup>C</sup> | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015 <sup>1</sup> |
| 2013                             | <1               | 226.8            | 7.8                  | 170.0            | 1.325            | 0.074            | 0.0006              | 0.09                   | 0.071            | 0.0274             |
| 2014                             | <1               | 163.8            | 7.4                  | 118.5            | 1.204            | 0.068            | <0.0005             | 0.06                   | 0.049            | 0.0172             |
| 2015                             | <1               | 159.3            | 7.6                  | 103.0            | 1.331            | 0.095            | <0.0005             | 0.08                   | 0.024            | 0.0157             |
| 2016                             | <1               | 117.2            | 7.5                  | 83.0             | 1.622            | 0.047            | 0.0006              | 0.10                   | 0.037            | 0.0118             |
| 2017                             | <1               | 120.6            | 7.5                  | 78.0             | 1.764            | 0.071            | <0.0005             | 0.05                   | 0.013            | 0.0157             |
| Annual Summary Statist           | ics <sup>J</sup> |                  |                      |                  |                  |                  |                     |                        |                  |                    |
| Average                          | <1               | 157.5            | 7.6                  | 110.5            | 1.449            | 0.071            | 0.0006              | 0.08                   | 0.039            | 0.0176             |
| Maximum                          | <1               | 226.8            | 7.8                  | 170.0            | 1.764            | 0.095            | 0.0006              | 0.10                   | 0.071            | 0.0274             |
| Minimum                          | <1               | 117.2            | 7.4                  | 78.0             | 1.204            | 0.047            | <0.0005             | 0.05                   | 0.013            | 0.0118             |

#### Table 5.2.1.1a Annual Average Concentrations ETP Influent (D-1)

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, and BCMOE water quality guidelines for the protection of aquatic life or the upper limit of

background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the 5-year annual average of hardness at this station.

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>G</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

<sup>J</sup>Statistics based on five year annual average, maximum and minimum.

Bolded values indicate an Assessment Criteria limit exceedance

TMA-1 Final Discharge is monitored at the Stollery Settling Pond Outlet (D-2). Review of annual average concentrations for SAMP and TOMP parameters for the last five years indicate annual average radium concentrations have consistently remained well below the Ministry of Environment and Energy (MOEE) Provincial Water Quality Objectives (PWQO) of 1.0 Bq/L (Table 5.2.1.1b). The pH at this station remains neutral, and iron and manganese concentrations consistently meet receiving environment AC. Although uranium concentrations consistently exceeds AC each year within the last five years, they do appear to be generally decreasing over time. Cobalt remains slightly above method detection limits, thus meeting its respective AC (0.0025 mg/L) each year (Table 5.2.1.1b). Hardness and sulphate concentrations have been variable and relatively elevated over the last five years. TSS concentrations have remained stable over time at 1 mg/L (Table 5.2.1.1b). Barium concentrations have shown variability over the last five years, but have remained well below its AC.

| PARAMETER<br>UNITS               | Hardness<br>mg/L   | рН<br>pH units       | SO4<br>mg/L    | TSS<br>mg/L | Ra<br>Bq/L       | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L             | Mn<br>mg/L       | U<br>mg/L          |
|----------------------------------|--------------------|----------------------|----------------|-------------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Assessment Criteria <sup>A</sup> | -                  | 5.2/6.5 <sup>B</sup> | _ <sup>c</sup> | -           | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015 <sup>1</sup> |
| 2013                             | 331.8              | 7.3                  | 261.7          | 1           | 0.127            | 0.169            | 0.0008              | 0.20                   | 0.241            | 0.0522             |
| 2014                             | 259.0              | 7.1                  | 215.0          | 1           | 0.175            | 0.206            | 0.0008              | 0.18                   | 0.209            | 0.0367             |
| 2015                             | 296.8              | 7.2                  | 241.7          | 1           | 0.113            | 0.140            | 0.0006              | 0.18                   | 0.212            | 0.0416             |
| 2016                             | 287.8              | 7.1                  | 227.5          | 1           | 0.153            | 0.206            | 0.0006              | 0.22                   | 0.134            | 0.0396             |
| 2017                             | 305.8              | 7.3                  | 230.8          | 1           | 0.123            | 0.205            | 0.0006              | 0.27                   | 0.157            | 0.0390             |
| Annual Summary Statis            | stics <sup>J</sup> |                      |                |             |                  |                  |                     |                        |                  |                    |
| Average                          | 296.2              | 7.2                  | 235.3          | 1           | 0.138            | 0.185            | 0.0007              | 0.21                   | 0.191            | 0.0418             |
| Maximum                          | 331.8              | 7.3                  | 261.7          | 1           | 0.175            | 0.206            | 0.0008              | 0.27                   | 0.241            | 0.0522             |
| Minimum                          | 259.0              | 7.1                  | 215.0          | 1           | 0.113            | 0.140            | 0.0006              | 0.18                   | 0.134            | 0.0367             |

#### Table 5.2.1.1bFinal Discharge at Stollery Settling Pond Outlet (D-2)

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, and BCMOE water quality guidelines for the protection of aquatic life or the upper limit of

background concentrations (between 2003-2013), whichever is higher  $\mbox{(Minnow, 2016)}$ 

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and since the 5-year annual average for hardness exceeds the highest hardness tested (i.e. the upper bound), a site-specific assessment would be required to accurately determine the AC for sulphate at this location.

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>G</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the

SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is

Canadian Council of Ministers of the Environment limit (CCME, 2013)

Statistics based on five year annual average, maximum and minimum.

Bolded values indicate an Assessment Criteria limit exceedance

As per SAMP requirements, toxicity is monitored for Denison TMA-1 at the final discharge D-2 (Stollery Settling Pond Outlet) to estimate the potential effects on biological components. In 2017, toxicity testing was done semi-annually and included acute *Daphnia magna* and rainbow trout as well as sub lethal *Ceriodaphnia dubia*. In 2017, results confirmed 0% acute mortality/lethality for both *Daphnia magna* and rainbow trout at station D-2 in both sampling events (Appendix IV). Furthermore, a >100% IC<sub>25</sub> and >100% LC<sub>50</sub> result for *Ceriodaphnia dubia* was achieved during

both sampling events in 2017, signifying a non-toxic effluent for reproduction and survival reproduction of the test organism respectively (Appendix IV).

#### 5.2.1.1.1 Discharge Compliance – Denison TMA-1 Final Discharge

In 2017, TMA-1 effluent quality at the final point of control, D-2, was in compliance with the discharge criteria in the licence (Table 5.2.1.1.1).

|       |          |                                  | I                                      | Number of Times Disc             | harge Limits Were Exceede              | d                                |                         |  |
|-------|----------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------------|----------------------------------|-------------------------|--|
| Month | Samples  |                                  | pH<br>bH units                         |                                  | TSS<br>mg/L                            | Ra(T)<br>Bq/L                    |                         |  |
|       | Required | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : | Grab Sample Limit <sup>1</sup> : |                         |  |
|       |          | Upper 9.5<br>Lower 5.5           | Upper 9.5<br>Lower 6.5                 | Upper 50<br>Lower N/A            | Upper 25<br>Lower N/A                  | Upper 1.11<br>Lower N/A          | Upper 0.37<br>Lower N/A |  |
| Jan.  | 5        | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                  |  |
| Feb.  | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| Mar.  | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| Apr.  | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| May   | 5        | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                  |  |
| June  | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| July  | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| Aug.  | 5        | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                  |  |
| Sept. | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| Oct.  | 5        | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                  |  |
| Nov.  | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| Dec.  | 4        | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                  |  |
| YTD   | 52       | 0 of 52                          | 0 of 12                                | 0 of 52                          | 0 of 12                                | 0 of 52                          | 0 of 12                 |  |

# Table 5.2.1.1.1 2017 TMA-1 Compliance with Discharge Limits at Final Point of Control (D-2)

<sup>1</sup>Limits established in the Licence UMDL-MINEMILL-DENISON.01/indf issued December 15, 2004.

#### 5.2.1.2 Denison Lower Williams Lake

Site-specific water quality monitoring at the Denison LW ETP was completed in accordance with SAMP and TOMP requirements. Detailed results are provided in Appendix IV.

Seepage from Dam 1 is monitored at the Lower Williams Influent (D-22). Review of annual average concentrations for TOMP parameters indicates variability for all parameters over the last five years. Water quality at D-22 shows slightly below, but near neutral pH (Table 5.2.1.2a). Sulphate concentrations have been variable from year to year, but have remained relatively low compared to other stations within TOMP (Appendix IV). Radium, uranium, barium, and cobalt concentrations have all consistently remained below their respective AC. Iron concentrations have seen a slight increase each year up until 2017, at which point a significant decrease in concentrations in 2015 and 2016 were likely influenced by seasonal spikes observed in July of both years when precipitation was minimal and conditions were very dry; no impact was observed downstream at the final discharge (D-3). The lower annual average concentrations for most parameters in 2017 can likely be attributed to the greater than average rainfall that occurred throughout the year as evidenced by the volume of water treated in 2017; 505,000,000 L compared to 207,000,000 L in 2016 (Table 5.3.2.2.1).

| PARAMETER<br>UNITS               | рН<br>pH units       | SO4<br>mg/L | Ra<br>Bq/L       | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L             | Mn<br>mg/L       | U<br>mg/L          |
|----------------------------------|----------------------|-------------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Assessment Criteria <sup>A</sup> | 5.2/6.5 <sup>B</sup> | -           | 1.0 <sup>C</sup> | 1.0 <sup>D</sup> | 0.0025 <sup>E</sup> | 0.49/1.69 <sup>F</sup> | 0.8 <sup>G</sup> | 0.015 <sup>H</sup> |
| 2013                             | 6.9                  | 95.0        | 0.262            | 0.034            | 0.0005              | 3.51                   | 0.444            | 0.0014             |
| 2014                             | 6.7                  | 80.3        | 0.479            | 0.035            | 0.0010              | 3.90                   | 0.635            | 0.0017             |
| 2015                             | 6.7                  | 118.8       | 0.449            | 0.047            | 0.0011              | 4.31                   | 1.194            | 0.0030             |
| 2016                             | 6.7                  | 109.0       | 0.604            | 0.043            | 0.0009              | 5.43                   | 1.603            | 0.0019             |
| 2017                             | 6.7                  | 72.0        | 0.171            | 0.023            | <0.0005             | 1.39                   | 0.186            | 0.0008             |
| Annual Summary Statis            | tics <sup>1</sup>    |             |                  |                  |                     |                        |                  |                    |
| Average                          | 6.7                  | 95.0        | 0.393            | 0.036            | 0.0009              | 3.71                   | 0.812            | 0.0018             |
| Maximum                          | 6.9                  | 118.8       | 0.604            | 0.047            | 0.0011              | 5.43                   | 1.603            | 0.0030             |
| Minimum                          | 6.7                  | 72.0        | 0.171            | 0.023            | 0.0005              | 1.39                   | 0.186            | 0.0008             |

Table 5.2.1.2aLower Williams ETP Influent (D-22)

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, and BCMOE water quality guidelines for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>c</sup>PWQO for Radium (Minnow, 2016)

<sup>D</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>E</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>F</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>G</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

<sup>H</sup>Canadian Council of Ministers of the Environment limit (CCME, 2013)

<sup>1</sup>Statistics based on five year annual average, maximum and minimum.

Bolded values indicate an Assessment Criteria limit exceedance

The discharge from Lower Williams is monitored at the Final Discharge Point (D-3). Review of annual average concentrations for SAMP and TOMP parameters (Table 5.2.1.2b) indicate that all parameters appear to be generally stable, and have consistently remained well below receiving environment AC over the past five years. As previously mentioned, sulphate AC is hardness-dependent, and based on the 5-year annual average hardness concentration, all yearly average sulphate concentrations meet the calculated AC of 309 mg/L (Table 5.2.1.2b). Furthermore, cobalt concentrations have remained at or below method detection limits over the 5-year trend. There are no other discernible trends in the data set.

| PARAMETER<br>UNITS               | Hardness<br>mg/L   | рН<br>pH units       | SO4<br>mg/L      | TSS<br>mg/L | Ra<br>Bq/L       | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L             | Mn<br>mg/L       | U<br>mg/L          |
|----------------------------------|--------------------|----------------------|------------------|-------------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Assessment Criteria <sup>A</sup> | -                  | 5.2/6.5 <sup>B</sup> | 309 <sup>C</sup> | -           | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015 <sup>1</sup> |
| 2013                             | 120.1              | 7.4                  | 74.3             | 1           | 0.119            | 0.242            | <0.0005             | 0.09                   | 0.015            | 0.0070             |
| 2014                             | 101.6              | 7.1                  | 66.8             | 1           | 0.127            | 0.320            | 0.0005              | 0.20                   | 0.049            | 0.0039             |
| 2015                             | 118.6              | 7.1                  | 79.1             | 1           | 0.124            | 0.254            | 0.0006              | 0.24                   | 0.063            | 0.0041             |
| 2016                             | 122.2              | 7.0                  | 82.7             | 1           | 0.101            | 0.211            | <0.0005             | 0.06                   | 0.006            | 0.0031             |
| 2017                             | 113.8              | 7.1                  | 68.2             | 1           | 0.120            | 0.228            | <0.0005             | 0.12                   | 0.015            | 0.0048             |
| Annual Summary Statis            | stics <sup>J</sup> |                      |                  |             |                  |                  |                     |                        |                  |                    |
| Average                          | 115.3              | 7.1                  | 74.2             | 1           | 0.118            | 0.251            | 0.0006              | 0.14                   | 0.030            | 0.0046             |
| Maximum                          | 122.2              | 7.4                  | 82.7             | 1           | 0.127            | 0.320            | 0.0006              | 0.24                   | 0.063            | 0.0070             |
| Minimum                          | 101.6              | 7.0                  | 66.8             | 1           | 0.101            | 0.211            | <0.0005             | 0.06                   | 0.006            | 0.0031             |

Table 5.2.1.2b Lower Williams Final Discharge at Denison Access Road (D-3)

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, and BCMOE water quality guidelines for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving

environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the 5-year annual average of hardness at this station.

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>G</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

<sup>J</sup>Statistics based on five year annual average, maximum and minimum.

Bolded values indicate an Assessment Criteria limit exceedance

# 5.2.1.2.1 Discharge Compliance – Lower Williams Final Discharge

In 2017, Lower Williams effluent quality at the final point of control, D-3, was in compliance with the discharge criteria in the licence (Table 5.2.1.2.1).

|       |           |                                  | Ν                                      | lumber of Times Disc             | harge Limits Were Exceede              | ed                               |                                        |  |
|-------|-----------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------------|--|
|       | Samples   |                                  | рН                                     |                                  | TSS                                    | Ra(T)                            |                                        |  |
| Month | Required  |                                  | pH units                               |                                  | _mg/L                                  |                                  | Bq/L                                   |  |
|       | rtoquirou | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : |  |
|       |           | Upper 9.5<br>Lower 5.5           | Upper 9.5<br>Lower 6.5                 | Upper 50<br>Lower N/A            | Upper 25<br>Lower N/A                  | Upper 1.11<br>Lower N/A          | Upper 0.37<br>Lower N/A                |  |
| Jan.  | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |  |
| Feb.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| Mar.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| Apr.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| May   | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |  |
| June  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| July  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| Aug.  | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |  |
| Sept. | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| Oct.  | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |  |
| Nov.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| Dec.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |  |
| YTD   | 52        | 0 of 52                          | 0 of 12                                | 0 of 52                          | 0 of 12                                | 0 of 52                          | 0 of 12                                |  |

# Table 5.2.1.2.1 2017 Lower Williams Compliance with Discharge Limits at Final Point of Control (D-3)

<sup>1</sup>Limits established in the Licence UMDL-MINEMILL-DENISON.01/indf issued December 15, 2004.

# 5.2.1.3 Stanrock

Discharge, runoff, and seepage from the TMA are all monitored at the Stanrock Treatment Plant Influent (DS-2). Based on a review of the annual averages of the last five years of data, annual average radium concentrations appear to be relatively stable and consistently remain below the AC of 1.0 Bq/L, while annual average barium concentrations remain well below the AC of 1.0 mg/L (Table 5.2.1.3a). Both sulphate and acidity concentrations are relatively high compared to other monitoring stations in the program, and have been variable over time. Iron concentrations are elevated at DS-2 as well, continuously exceeding AC (Table 5.2.1.3a). Furthermore, cobalt, manganese, and uranium concentrations are relatively stable, but remain above their receiving environment AC of 0.0025 mg/L, 0.8 mg/L, and 0.015 mg/L respectively (Table 5.2.1.3a). Depressed pH values are consistently apparent at this location due to the nature of the monitoring station being influenced by the TMA.

| PARAMETER<br>UNITS               | ACID<br>mg/L       | рН<br>pH units       | SO4<br>mg/L | Ra<br>Bq/L       | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L | Mn<br>mg/L                      | U<br>mg/L          |
|----------------------------------|--------------------|----------------------|-------------|------------------|------------------|---------------------|------------|---------------------------------|--------------------|
| Assessment Criteria <sup>A</sup> | -                  | 5.2/6.5 <sup>B</sup> | -           | 1.0 <sup>C</sup> | 1.0 <sup>D</sup> | 0.0025 <sup>E</sup> | 0.49/1.69  | ) <sup>F</sup> 0.8 <sup>G</sup> | 0.015 <sup>H</sup> |
| 2013                             | 234                | 3.0                  | 584.8       | 0.158            | 0.015            | 0.1000              | 38.72      | 1.857                           | 0.0348             |
| 2014                             | 156                | 3.0                  | 422.5       | 0.188            | 0.028            | 0.0589              | 30.35      | 1.426                           | 0.0188             |
| 2015                             | 231                | 2.9                  | 632.5       | 0.152            | 0.029            | 0.0763              | 46.65      | 1.939                           | 0.0220             |
| 2016                             | 235                | 2.9                  | 580.0       | 0.182            | 0.030            | 0.0786              | 45.40      | 1.724                           | 0.0321             |
| 2017                             | 194                | 2.8                  | 502.5       | 0.182            | 0.018            | 0.0682              | 28.80      | 1.349                           | 0.0270             |
| Annual Summary Stati             | stics <sup>1</sup> |                      |             |                  |                  |                     |            |                                 |                    |
| Average                          | 210                | 2.9                  | 544.5       | 0.172            | 0.024            | 0.0764              | 37.98      | 1.659                           | 0.0269             |
| Maximum                          | 235                | 3.0                  | 632.5       | 0.188            | 0.030            | 0.1000              | 46.65      | 1.939                           | 0.0348             |
| Minimum                          | 156                | 2.8                  | 422.5       | 0.152            | 0.015            | 0.0589              | 28.80      | 1.349                           | 0.0188             |

# Table 5.2.1.3a Stanrock Influent (DS-2)

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, and BCMOE water quality guidelines for the protection of aquatic life or the

upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>PWQO for Radium (Minnow, 2016)

<sup>D</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>E</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>F</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>G</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

<sup>H</sup>Canadian Council of Ministers of the Environment limit (CCME, 2013)

<sup>I</sup>Statistics based on five year annual average, maximum and minimum.

Bolded values indicate an Assessment Criteria limit exceedance

Water quality at the Stanrock Final Point of Control is designated and monitored at Orient Lake Outlet (DS-4). Based on a review of water quality data at DS-4 for the last five years, annual average sulphate and hardness concentrations are relatively high for a final discharge point, but are consistent with the Denison final discharge values (Tables 5.2.1.1b & 5.2.1.3b). Since the average hardness concentration at DS-4 exceeds the upper bound hardness value tested for the determination of an AC for sulphate, then sulphate cannot be accurately compared to an AC at

this location. In the future, a site-specific study would be beneficial in determining an AC for sulphate for DS-4 to be able to identify anomalous sulphate values at the final discharge. All metal concentrations consistently meet receiving water AC, with cobalt approaching detections levels (Table 5.2.1.3b). Furthermore, pH is neutral at the Stanrock final discharge monitoring station, consistently meeting the receiving environment AC, and TSS remains consistently low at 1 mg/L over the last five years.

| PARAMETER<br>UNITS               | hard<br>mg/L      | pH<br>pH units       | SO4<br>mg/L | TSS<br>mg/L | Ra<br>Bq/L       | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L             | Mn<br>mg/L       | U<br>mg/L          |
|----------------------------------|-------------------|----------------------|-------------|-------------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Assessment Criteria <sup>A</sup> | -                 | 5.2/6.5 <sup>B</sup> | - c         | -           | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015 <sup>1</sup> |
| 2013                             | 383.9             | 7.3                  | 355.8       | 1           | 0.045            | 0.033            | 0.0008              | 0.15                   | 0.042            | 0.0023             |
| 2014                             | 316.1             | 7.1                  | 292.5       | 1           | 0.054            | 0.045            | 0.0007              | 0.15                   | 0.049            | 0.0016             |
| 2015                             | 292.5             | 7.1                  | 258.3       | 1           | 0.062            | 0.050            | 0.0006              | 0.13                   | 0.067            | 0.0021             |
| 2016                             | 300.0             | 7.1                  | 262.5       | 1           | 0.073            | 0.047            | 0.0006              | 0.10                   | 0.044            | 0.0043             |
| 2017                             | 331.8             | 7.2                  | 277.5       | 1           | 0.072            | 0.045            | 0.0006              | 0.17                   | 0.044            | 0.0042             |
| Annual Summary Statis            | tics <sup>J</sup> |                      |             |             |                  |                  |                     |                        |                  |                    |
| Average                          | 324.9             | 7.2                  | 289.3       | 1           | 0.061            | 0.044            | 0.0007              | 0.14                   | 0.049            | 0.0029             |
| Maximum                          | 383.9             | 7.3                  | 355.8       | 1           | 0.073            | 0.050            | 0.0008              | 0.17                   | 0.067            | 0.0043             |
| Minimum                          | 292.5             | 7.1                  | 258.3       | 1           | 0.045            | 0.033            | 0.0006              | 0.10                   | 0.042            | 0.0016             |

| Table 5.2.1.3b | Orient Lake Outlet Stanrock Final Point of Control (DS-4) |
|----------------|-----------------------------------------------------------|
|----------------|-----------------------------------------------------------|

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, and BCMOE water quality guidelines for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and since the 5 year annual average for hardness exceeds the highest hardness tested (i.e. the upper bound), a site-specific assessment would be required to accurately determine the AC for sulphate at this location. <sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>G</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the

average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

<sup>I</sup>Canadian Council of Ministers of the Environment limit (CCME, 2013)

<sup>J</sup>Statistics based on five year annual average, maximum and minimum.

Bolded values indicate an Assessment Criteria limit exceedance

As per SAMP requirements, toxicity is monitored for the Stanrock site at the final discharge (DS-4). In 2017, toxicity testing was done semi-annually (spring and fall), and included the same tests as was done at the Denison final effluent. The 2017 toxicity results at DS-4 confirmed 0% acute mortality/lethality for both *Daphnia magna* and rainbow trout for both sampling events (Appendix IV). Furthermore, a >100% IC<sub>25</sub> and a 55% IC<sub>25</sub> result for *Ceriodaphnia dubia* was confirmed in both the spring and fall sampling events respectively (Appendix IV). The average >77% IC<sub>25</sub> for *Ceriodaphnia dubia* at DS-4 concludes that the effluent is of low-toxicity for reproduction of the test organism, in that a 25% reproduction inhibition on the test population only occurred at effluent concentration >77% (Appendix IV). Survival results were >100% LC<sub>50</sub> for both sampling events, signifying the effluent is non-toxic to the survival of the test organism.

# 5.2.1.3.1 Discharge Compliance – Stanrock Final Discharge

In 2017, Stanrock TMA effluent quality at the final point of control, DS-4, was in compliance with the discharge criteria in the licence (Table 5.2.1.3.1).

|       |           |                                  |                                        | Number of Times Disc             | harge Limits Were Exceede              | d                                |                                        |
|-------|-----------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------------|----------------------------------|----------------------------------------|
|       | Samples   |                                  | рН                                     |                                  | TSS                                    |                                  | Ra(T)                                  |
| Month | Required  | <u> </u>                         | pH units                               |                                  | _mg/L                                  |                                  | Bq/L                                   |
|       | rtoquirou | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : | Grab Sample Limit <sup>1</sup> : | Monthly Arithmetic Mean <sup>1</sup> : |
|       |           | Upper 9.5<br>Lower 5.5           | Upper 9.5<br>Lower 6.5                 | Upper 50<br>Lower N/A            | Upper 25<br>Lower N/A                  | Upper 1.11<br>Lower N/A          | Upper 0.37<br>Lower N/A                |
| Jan.  | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |
| Feb.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| Mar.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| Apr.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| Мау   | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |
| June  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| July  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| Aug.  | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |
| Sept. | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| Oct.  | 5         | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 | 0 of 5                           | 0 of 1                                 |
| Nov.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| Dec.  | 4         | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 | 0 of 4                           | 0 of 1                                 |
| YTD   | 52        | 0 of 52                          | 0 of 12                                | 0 of 52                          | 0 of 12                                | 0 of 52                          | 0 of 12                                |

 Table 5.2.1.3.1
 2017 Stanrock Tailings Management Area Compliance with Discharge Limits at Final Point of Control (DS-4)

<sup>1</sup>Limits established in the Licence UMDL-Minemill-Stanrock.02/indf issued September, 2010.

# 5.2.2 Groundwater Quality

Field quality assurance and quality control sampling was extended to the groundwater monitoring program in 2006. Appendix III contains detailed groundwater QA/QC results against DQOs while Appendix IV contains groundwater station-specific five-year annual data. The 2017 groundwater field blank and field precision data summary is presented in Table 5.2.2.

The iron field blank DQO of 0.04 mg/L was slightly exceeded in two of three samples at 0.08 mg/L and 0.07 mg/L. Although there is evidence of slight contamination, both locations indicate slightly elevated to high iron concentrations (ranging from 21.90 mg/L to 651 mg/L) and these results are consistent with previous values in the last five years. Therefore, the exceedances are not attributed to the contamination, and do not impact interpretation of iron groundwater quality results.

The acidity field blank DQO of 2 mg/L was slightly exceeded in two of three samples at 4.0 mg/L and 3.0 mg/L. Although field blank samples indicate minimal contamination, likely the result of improper rinsing between samples, it appears that there was little impact on primary groundwater results and therefore the issue does not affect interpretation of water quality results. All related sample results were consistent with previous values in the last five years and confirmed by the duplicates.

The field precision DQOs were met for all parameters in all samples in 2017. The annual percent differences for all parameters were at or below 18% at all locations.

|                             | рН  | SO4<br>mg/L | Acidity<br>mg/L | Iron<br>mg/L |
|-----------------------------|-----|-------------|-----------------|--------------|
| Field Blank Statistics      |     |             |                 |              |
| Count                       | 3   | 3           | 3               | 3            |
| Average                     | 5.6 | 0.2         | 3               | 0.06         |
| Max                         | 5.7 | 0.2         | 4               | 0.08         |
| Min                         | 5.5 | <0.1        | <1              | <0.02        |
| Field Blank Exceedances     |     |             |                 |              |
| Criteria <sup>1</sup>       |     | 0.2         | 2               | 0.04         |
| # Exceedances               | 0   | 0           | 2               | 2            |
| Field Duplicate Statistics  |     |             |                 |              |
| Count                       | 3   | 3           | 3               | 3            |
| Average                     | 6%  | 5%          | 3%              | 3%           |
| Max                         | 18% | 12%         | 5%              | 7%           |
| Min                         | 0%  | 0%          | 0%              | 0%           |
| Field Precision Exceedances |     |             |                 |              |
| Criteria <sup>1</sup>       | 20% | 20%         | 20%             | 20%          |
| # Exceedances               | 0   | 0           | 0               | 0            |

# Table 5.2.2 2017 Groundwater Field Blank and Field Precision Data Summary

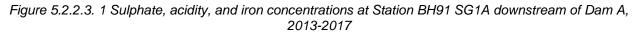
1 Field criteria taken from Table 5.2 of the Cycle 4 Study Design for SRWMP, SAMP and TOMP (Minnow, 2016) Bold Indicates an exceedance of the Blank Criteria

# 5.2.2.1 Denison TMA-1 Groundwater Results

At the east end of the TMA, downstream of Dam 17 on the North Abutment (BH91 D1A and BH91 D1B), review of the data for these monitoring wells for the last five years indicates slightly elevated iron concentrations at depth with acidity levels remaining below the method detection limit (Appendix IV). Near surface, iron concentrations have remained relatively low every year up until the 2017 program, when iron concentrations increased by more than an order of magnitude at 1.73 mg/L (Appendix IV). This increase was confirmed by repeat analysis. It is possible the increase in iron concentration is related to the gradually decreasing pH observed over the last five years.

Downstream of Dam 17 in the North Valley (BH91 D3A and BH91 D3B), data from the past five years for these monitoring wells indicates gradually improving water quality, which can be observed by near neutral pH values (Appendix IV). Although acidity and iron concentrations are relatively high in both wells, they have consistently been decreasing over time showing a sign of improving water quality (Appendix IV).

Downstream of Dam 10 (BH91 DG4B) groundwater is characterized by slightly depressed pH, gradually increasing sulphate concentrations, and acidity below detection limits (Appendix IV). Iron concentrations have significantly increased in the last three years, but are consistent with values prior to 2013.


# 5.2.2.2 Denison Lower Williams Lake

Groundwater monitoring results downstream of Dam 1 on the North Ridge (BH91 D9A) indicate near neutral pH levels over the last five years. Iron and acidity concentrations have been moderately elevated, but gradually decreasing over the same time period (Appendix IV). Sulphate concentrations continue to remain elevated at this station.

# 5.2.2.3 Stanrock

Groundwater quality is measured at Stanrock downstream of the following dams: Dam A (BH91 SG1A), Dam B (BH98-16A), Dam C (BH98-15A), and Dam D (BH91-SG2 and BH91-SG3). Dam A groundwater is characterized by depressed pH with elevated sulphate, acidity, and iron concentrations (Appendix IV). Despite spikes in concentrations of sulphate, acidity, and iron in 2015, overall concentrations have been decreasing over time in groundwater downstream of Dam A (Figure 5.2.2.3. 1). At Dam B, groundwater quality results have been variable over the past five years. Groundwater quality at this location is characterized by depressed pH, with relatively high acidity, iron, and sulphate concentrations (Appendix IV). Furthermore, acidity, iron, and sulphate concentrations have risen and fallen alternatively each year since 2013 (Figure 5.2.2.3. 2). Groundwater quality at this location is characterized by mildly depressed pH values with elevated sulphate, acidity, and iron concentrations (Appendix IV). Groundwater quality monitored downstream of Dam C indicates slightly depressed pH with elevated concentrations of sulphate. acidity and iron (Appendix IV). However, sulphate, acidity, and iron concentrations appear to be gradually decreasing over time (Figure 5.2.2.3. 3). There has been no recharge in most wells at Dam D, with the exception BH91-SG2A, where groundwater quality results show near neutral pH values with elevated concentrations of all other parameters (Appendix IV). Groundwater results

at this well have been variable over the past five years. Station BH91-SG3 was able to be sampled in 2017 for the first time in five years. Similar to other stations in the program, groundwater quality at this station showed depressed pH values accompanied by elevated sulphate, acidity, and iron concentrations (Appendix IV). However, when compared to other groundwater stations on the Stanrock site, values and concentrations were significantly lower than all other locations.



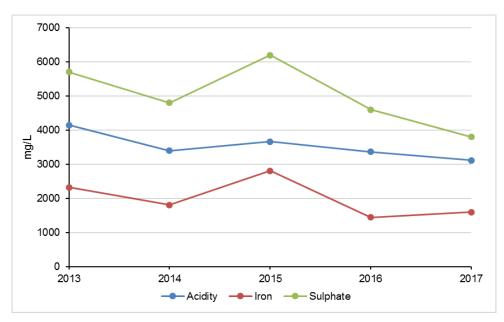
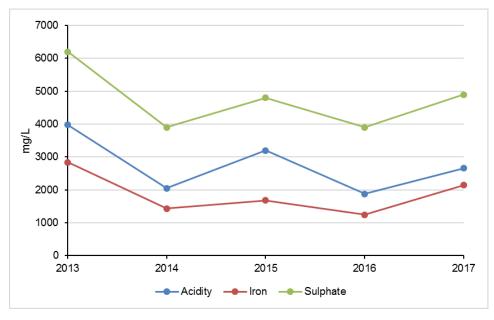




Figure 5.2.2.3. 2 Sulphate, acidity, and iron concentrations at Station BH98-16A downstream of Dam B, 2013-2017



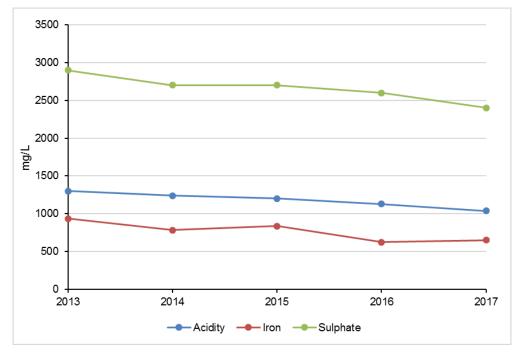



Figure 5.2.2.3. 3 Sulphate, acidity, and iron concentrations at Station BH98-15A downstream of Dam C, 2013-2017

# 5.2.3 Porewater Quality

Stanrock porewater overall, as measured at Dam A (ST3-P3, 5, 6, and 8), is characterized by depressed pH with elevated acidity, sulphate, and iron concentrations. Concentrations of acidity, iron, and sulphate increase significantly with depth at the aforementioned stations (Figures 5.2.3. 1 to 5.2.3. 3). Therefore, as you reach near surface stations, iron, sulphate, and acidity decrease significantly in concentration. When reviewing the data over the last five years, there appears to be no significant trends in pH at either station. pH values at all stations appear to remain relatively stable over time, with little changes (Figure 5.2.3. 4). The same can be concluded with the other parameters measured, as can be observed in the following figures.

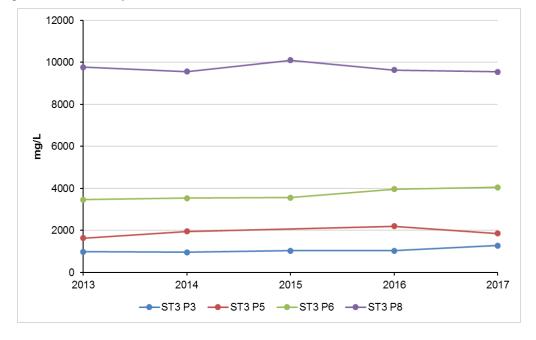
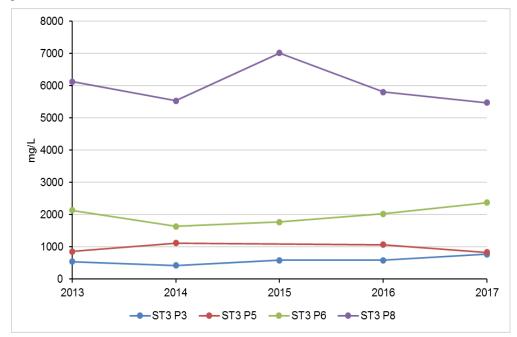




Figure 5.2.3. 1 Acidity Concentrations at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-2017

Figure 5.2.3. 2 Iron Concentrations at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-2017



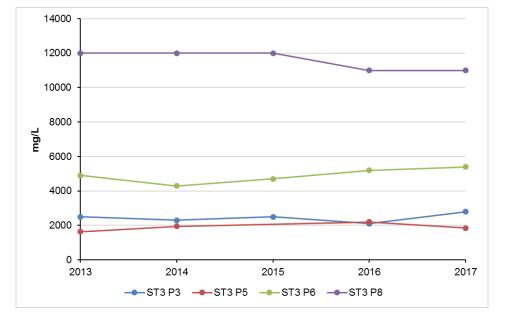
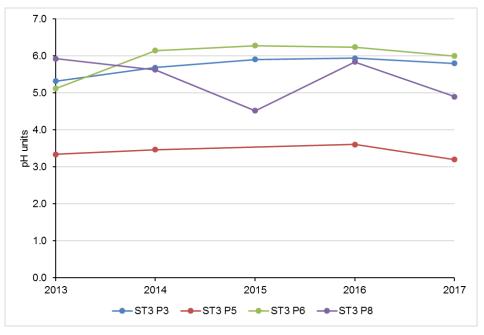




Figure 5.2.3. 3 Sulphate Concentrations at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-2017

Figure 5.2.3. 4 pH at ST3 P3, ST3 P5, ST3 P6, and ST3 P8, 2013-2017



# 5.3 Site Specific Maintenance and Operations Program

Site-specific program reports are provided in the following sections in accordance with the SAMP and TOMP Annual Reporting Requirements. Each section provides the following information:

• Summary of tailings management area (TMA) maintenance

• Summary of effluent treatment plant (ETP) operations

# 5.3.1 Denison TMA-1

#### 5.3.1.1 TMA Maintenance

Routine inspection and preventative maintenance was performed as required.

In 2017, groundwater and dam instrumentation well elevations were resurveyed as well as dam crest elevations.

#### 5.3.1.2 ETP Operations

The ETP at the TMA-1 spillway (D-1) operated for 217 days in 2017 at a monthly average daily flow rate of 89 L/s and a total volume of 1,675,000,000 L treated. For treatment purposes in 2017, the amount of sodium hydroxide consumed was 783 kg at the end of the year, and the amount of barium chloride that was consumed was 5027 kg. An estimated 1,933,000,000 L was discharged from the final point of control at the Stollery Settling Pond Outlet, D-2, over a total of 365 discharge days (Table 5.3.1.2.1).

# 5.3.1.2.1 Operating Summary

The ETP operated periodically throughout the year as required depending on the water level of the TMA basin. The use of siphons for TMA drawdown was effective to ensure the pond level remained below spillway elevation as well as to maintain a controlled release of water from TMA-1. This controlled release of water from TMA-1 further helped maximize the settling capabilities of radium in the Stollery Lake Settling Pond. In 2017, barium chloride continued to be the primary treatment reagent at the ETP for the entire year. However, sodium hydroxide was re-introduced as a pH-controlling agent in the month of March. Barium chloride continued to assist in radium removal, while sodium hydroxide was used in addition to help increase pH, which in turn helped with the precipitation of radium at the Stollery Settling Pond. pH downstream of the ETP at station D-1A was monitored closely throughout the sodium hydroxide treatment period in order to evaluate the success of the treatment.

For the purpose of this treatment, the original sodium hydroxide tank that had been converted into a flocculent (floc) mixing and dispensing station in 2016, was thoroughly cleaned and converted back to its original sodium hydroxide reagent tank in March 2017. The addition of sodium hydroxide as a treatment reagent continued until mid-June. As a result, the average pH level at D-1A during the treatment period was 8.1. Furthermore, the radium concentration at the final discharge (D-2) remained well below the licensed grab sample discharge criteria of 1.11 Bq/L with an annual average concentration of 0.123 Bq/L.

A few minor operational issues that were present in 2016 continued throughout the beginning of 2017. The blocking of the siphon intake screens occurred often due to organic matter plugging them up during operation. This debris blockage often resulted in the shutdown of the siphons. During this time, Denison fixed the plugged lines by blowing out the lines with the use of a compressor and re-establishing the siphons rather quickly, within a day in most cases. To solve this ongoing problem, Denison acquired and installed new siphon screens with larger holes in the spring and summer of 2017. The replacement of these screens has created a significant reduction in the time, effort, and cleaning frequency required to clear the siphons of debris. The siphons only required clearing with the compressor once every few months as opposed to the lines having to be blown out monthly, which has been the case in the past. Furthermore, the larger holed siphon screens have ensured optimum flow rates, even in the event that small amounts of debris become built up in the line.

# Table 5.3.1.2.1 2017 TMA-1 Effluent Treatment Plant Flow Rates, Operating Days, and Discharge Days

|                                                |      |      |      |      |      |      |      |      |      |      |      |      | Y.T.D. | Y.T.D |
|------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------|-------|
| ТЕМ                                            | JAN  | FEB  | MAR  | APR  | MAY  | JUNE | JULY | AUG  | SEPT | OCT  | NOV  | DEC  | 2017   | 2016  |
| PLANT OPERATIONS                               |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
| Operating Days                                 | 0    | 7    | 31   | 30   | 31   | 28   | 21   | 0    | 0    | 8    | 30   | 31   | 217    | 141   |
| Maximum Daily Plant Flow (L/s D-1)             | 0    | 64   | 130  | 109  | 80   | 134  | 118  | 0    | 0    | 115  | 113  | 112  | 134    | 173   |
| Minimum Daily Plant Flow (L/s @ D-1)           | 0    | 45   | 37   | 29   | 44   | 48   | 109  | 0    | 0    | 108  | 100  | 99   | 0      | 0     |
| Monthly Average Daily Plant Flow (L/s @ D-1)   | 0    | 51   | 77   | 60   | 64   | 103  | 114  | 0    | 0    | 114  | 110  | 109  | 89     | 108   |
| Total Volume Treated (ML)                      | 0    | 31   | 207  | 157  | 171  | 248  | 206  | 0    | 0    | 79   | 285  | 291  | 1675   | 1310  |
| Barium Chloride Consumption                    |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
| total kg/month                                 | 0    | 97   | 634  | 468  | 519  | 727  | 603  | 0    | 0    | 235  | 865  | 879  | 5027   | 3232  |
| monthly average mg/litre                       | 0.00 | 3.15 | 3.06 | 2.98 | 3.04 | 2.93 | 2.92 | 0.00 | 0.00 | 2.99 | 3.04 | 3.02 | 3.00   | 2.47  |
| Sodium Hydroxide Consumption                   |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
| total kg/month                                 | 0    | 0    | 35   | 306  | 302  | 141  | 0    | 0    | 0    | 0    | 0    | 0    | 783    | 0     |
| monthly average mg/litre                       | 0.00 | 0.00 | 0.17 | 1.95 | 1.76 | 0.57 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47   | 0.00  |
| EFFLUENT                                       |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
| Discharge Days                                 | 31   | 28   | 31   | 30   | 31   | 30   | 31   | 31   | 30   | 31   | 30   | 31   | 365    | 366   |
| Maximum Daily Discharge Flow (L/s D-2)         | 27   | 39   | 240  | 194  | 66   | 87   | 115  | 21   | 17   | 203  | 81   | 194  | 240    | 173   |
| Minimum Daily Discharge Flow (L/s D-2)         | 17   | 9    | 66   | 52   | 39   | 17   | 9    | 17   | 14   | 12   | 81   | 39   | 9      | 0     |
| Monthly Average Daily Discharge Flow (L/s D-2) | 21   | 19   | 144  | 111  | 47   | 52   | 66   | 19   | 15   | 67   | 81   | 92   | 61     | 42    |
| Total Volume Discharged (ML)                   | 56   | 45   | 386  | 286  | 126  | 135  | 177  | 50   | 38   | 178  | 210  | 245  | 1933   | 1326  |

# 5.3.2 Denison Lower Williams Lake

#### 5.3.2.1 TMA Maintenance

Routine inspection and preventative maintenance were performed at the Lower Williams Lake site as required.

#### 5.3.2.2 Summary of ETP Operations

The treatment plant, as monitored at station D-22, operated 365 days at an average operating flow rate of 16 L/s in 2017. An estimated 505,000,000 L of water was treated, and the same amount was discharged from the final point of control, D-3, over a total of 365 discharge days. Barium chloride consumption for the year at the LW ETP was 647 kg by the end of 2017 (Table 5.3.2.2.1).

#### 5.3.2.2.1 Operating Summary

The treatment plant at Lower Williams Lake operated throughout 2017 solely for the control of radium levels; neutralization for pH control has not been required since 2002. Unlike 2016, water quantity never became too low over the year, thus flow to the ETP continued year-round, and the treatment plant continued to run all year as well.

There were no process or design changes to the LW ETP in 2017.

### Table 5.3.2.2.12017 Lower Williams ETP Flow Rates, Operating Days, and Discharge Days

|                                               |      |      |      |      |      |      |      |      |       |      |      |      | Y.T.D. | Y.T.D. |
|-----------------------------------------------|------|------|------|------|------|------|------|------|-------|------|------|------|--------|--------|
| ПЕМ                                           | JAN  | FEB  | MAR  | APR  | MAY  | JUNE | JULY | AUG  | SEPT  | OCT  | NOV  | DEC  | 2017   | 2016   |
| PLANT OPERATIONS                              |      |      |      |      |      |      |      |      |       |      |      |      |        |        |
| Operating Days                                | 31   | 28   | 31   | 30   | 31   | 30   | 31   | 31   | 30    | 31   | 30   | 31   | 365    | 346    |
| Maximum Daily Plant Flow (L/s @ D-22)         | 10   | 10   | 30   | 96   | 18   | 30   | 18   | 21   | 3     | 92   | 18   | 149  | 149    | 46     |
| Minimum Daily Plant Flow (L/s @ D-22)         | 1    | 1    | 10   | 5    | 3    | 3    | 1    | 1    | 1     | 3    | 6    | 10   | 1      | 0      |
| Monthly Average Daily Plant Flow (L/s @ D-22) | 4    | 5    | 15   | 45   | 10   | 11   | 8    | 6    | 2     | 29   | 11   | 47   | 16     | 7      |
| Total Volume Treated (ML)                     | 10   | 11   | 40   | 117  | 26   | 27   | 21   | 17   | 5     | 78   | 29   | 125  | 505    | 207    |
| Barium Chloride Consumption                   |      |      |      |      |      |      |      |      |       |      |      |      |        |        |
| total kg/month                                | 55   | 50   | 56   | 55   | 58   | 53   | 55   | 54   | 54    | 53   | 51   | 52   | 647    | 590    |
| monthly average mg/litre                      | 5.42 | 4.56 | 1.40 | 0.47 | 2.26 | 1.96 | 2.59 | 3.14 | 11.81 | 0.69 | 1.80 | 0.41 | 1      | 3      |
| Sodium Hydroxide Consumption                  |      |      |      |      |      |      |      |      |       |      |      |      |        |        |
| total kg/month                                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0      | 0      |
| monthly average mg/litre                      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00   |
| EFFLUENT                                      |      |      |      |      |      |      |      |      |       |      |      |      |        |        |
| Discharge Days                                | 31   | 28   | 31   | 30   | 31   | 30   | 31   | 31   | 30    | 31   | 30   | 31   | 365    | 274    |
| Maximum Discharge Flow (L/s @ D-3)            | 10   | 10   | 30   | 96   | 18   | 30   | 18   | 21   | 3     | 92   | 18   | 149  | 149    | 46     |
| Minimum Discharge Flow (L/s @ D-3)            | 1    | 1    | 10   | 5    | 3    | 3    | 1    | < 1  | 1     | 3    | 6    | 10   | 1      | 0      |
| Monthly Average Discharge Flow (L/s @ D-3)    | 4    | 5    | 15   | 45   | 10   | 11   | 8    | 6    | 2     | 29   | 11   | 47   | 16     | 9      |
| Total Volume Discharged (ML)                  | 10   | 11   | 40   | 117  | 26   | 27   | 21   | 17   | 5     | 78   | 29   | 125  | 505    | 207    |

### 5.3.3 Stanrock TMA

### 5.3.3.1 TMA Maintenance

In 2017, routine inspection and preventative maintenance were performed as required.

Groundwater and dam instrumentation well elevations were resurveyed as well as dam crest elevations.

In response to a public comment made on May 21, 2015 regarding the strange colouration of an unnamed water body adjacent to the Stanrock closed mine site, Denison has since been proactive in developing and conducting a series of monitoring programs including field observations, measurements, and sampling. These monitoring efforts were made in order to better assess the water quality and to determine effects with seasonal variability on parameter concentrations. Monitoring programs implemented thus far included quarterly monitoring of the pond (DSP), monthly monitoring of the pond seepage (DSP-2), and quarterly monitoring of the outflow area on the edge of Quirke Lake (DSP-3). Results of the programs determined minimal seepage into Quirke Lake (<1L/s), as well as depressed pH values and elevated metal concentrations for all three stations. Results from these monitoring efforts between 2015 and 2017 are included in Appendix V.

In the summer of 2016, Denison submitted a follow-up report to the CNSC. The report provided results of the aforementioned monitoring program for 2015 and 2016, historical review of the suspected source of the contamination and concluded that the pond would need to be treated. As part of the treatment plan there was a commitment to continue monitoring for a period of one more year after treatment to determine the effect on water quality. While in the process of determining a treatment option, continued discussions with CNSC determined that the Un-named Pond is on crown land and that provincial permitting will be required prior to treatment of the pond. It was then agreed that Denison would submit a detailed treatment plan to CNSC who would then seek the necessary permits required to allow treatment to be undertaken.

Denison has continued to monitor the Un-named Pond throughout 2017 while developing the treatment plan option. Results from 2017 monitoring program have been comparable to the initial monitoring program executed in 2015, and have not shown significant changes over time. Also, there continues to be no appreciable loading into Quirke Lake from the Un-named Pond even with the varied weather conditions over the past few years.

Denison is currently working on a detailed treatment plan for the Un-named Pond that will be submitted to CNSC in 2018.

### 5.3.3.2 Summary of ETP Operations

The Stanrock ETP, as monitored at DS-3, operated 201 days in 2017 at an average daily flow rate of 142 L/s. Approximately 2,458,000,000 L was treated at the Stanrock ETP in 2017. In 2017 at the Stanrock ETP, lime consumption was 205.16 tonnes, and barium chloride consumption was 1257 kg. Furthermore, 1,933,000,000 L was discharged from the final point of control, DS-4, over a total of 365 discharge days (Table 5.3.3.2.1).

### 5.3.3.2.1 Operating Summary

The Stanrock ETP operated as required throughout the year to maintain discharge compliance and control of the Holding Pond water levels. The majority of the operating days

were during spring and fall as runoff and rainfall conditions respectively are most often present during these times of the year (Table 5.3.3.2.1).

This year, approximately 105,331,180 L of water was siphoned from Beaver Lake to Dam G collection Pond and pumped to the Stanrock ETP. This ensured better pH control of Moose Lake and the final discharge water quality.

The Dam G pumps operated throughout the year to ensure the Dam G Seepage Collection Pond level remained well below spillway elevation. In 2017, an estimated 203,072,788 L of water was pumped from the Dam G Collection Pond to the ETP for treatment.

The Dam M Pond pumps operated throughout the year to ensure the Dam M Seepage Collection Pond level remained well below spillway elevation. An estimated 208,697,330 L of water was discharged to the Dam G Seepage Collection Pond.

Similar to 2016, the Dam G and Dam M pumps experienced several issues in 2017. The pumps experienced both mechanical and electrical failures. Spares were installed as required to maintain operation, and faulty pumps were sent away for repairs. Although surge and phase loss protection had been installed, issues with the pumps at these locations continued throughout 2017. Denison investigated other pumping options at the beginning of 2017, and new pumps were ordered from a new supplier. These pumps were installed later in 2017, and have been successful in avoiding the ongoing operating issues. The change in supplier has ensured equipment performance objectives are being met.

### Table 5.3.3.2.1 2017 Stanrock ETP Flow Rates, Operating Days, and Discharge Days

| ITEM                                              | JAN   | FEB   | MAR   | APR   | MAY   | JUNE  | JULY | AUG   | SEPT | ОСТ   | NOV   | DEC   | Y.T.D.<br>2017 | Y.T.D.<br>2016 |
|---------------------------------------------------|-------|-------|-------|-------|-------|-------|------|-------|------|-------|-------|-------|----------------|----------------|
|                                                   |       |       |       |       |       |       |      |       |      |       |       |       |                |                |
| PLANT OPERATIONS                                  |       |       |       |       |       |       |      |       |      |       |       |       |                |                |
| Operating Days                                    | 14    | 14    | 20    | 26    | 16    | 12    | 8    | 12    | 8    | 26    | 24    | 21    | 201            | 114            |
| Maximum Daily Plant Flow (L/s @ DS-2)             | 162   | 156   | 161   | 209   | 185   | 165   | 152  | 152   | 144  | 208   | 230   | 204   | 230            | 192            |
| Minimum Daily Plant Flow (L/s @ DS-2)             | 117   | 101   | 114   | 105   | 134   | 122   | 104  | 85    | 89   | 78    | 88    | 110   | 78             | 0              |
| Monthly Average Daily Plant Flow (L/s @ DS-2)     | 143   | 132   | 138   | 160   | 163   | 148   | 131  | 123   | 113  | 134   | 135   | 150   | 142            | 128            |
| Total Volume Treated (ML)                         | 173   | 159   | 239   | 360   | 225   | 153   | 91   | 128   | 78   | 301   | 279   | 272   | 2458           | 1264           |
| Barium Chloride Consumption                       |       |       |       |       |       |       |      |       |      |       |       |       |                |                |
| total kg/month                                    | 59    | 55    | 104   | 177   | 98    | 57    | 54   | 72    | 41   | 250   | 168   | 122   | 1257           | 653            |
| monthly average mg/litre                          | 0.34  | 0.35  | 0.43  | 0.49  | 0.43  | 0.37  | 0.59 | 0.56  | 0.53 | 0.83  | 0.60  | 0.45  | 0.51           | 0.52           |
| Lime Consumption                                  |       |       |       |       |       |       |      |       |      |       |       |       |                |                |
| total dry tonnes/month                            | 14.06 | 15.12 | 23.77 | 25.79 | 20.00 | 14.55 | 8.16 | 11.85 | 6.05 | 30.51 | 19.04 | 16.26 | 205.16         | 117.08         |
| monthly average g/litre                           | 0.08  | 0.09  | 0.10  | 0.07  | 0.09  | 0.09  | 0.09 | 0.09  | 0.08 | 0.10  | 0.07  | 0.06  | 0.08           | 0.09           |
| NEUTRALIZATION                                    |       |       |       |       |       |       |      |       |      |       |       |       |                |                |
| Lime Consumption                                  |       |       |       |       |       |       |      |       |      |       |       |       |                |                |
| Beaver Lake total dry tonnes/month                | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00  | 0.00 | 0.00  | 0.00  | 0.00  | 0.00           | 0.0            |
| Site total including ETP Operations               | 14.06 | 15.12 | 23.77 | 25.79 | 20.00 | 14.55 | 8.16 | 11.85 | 6.05 | 30.51 | 19.04 | 16.26 | 205.16         | 117.1          |
| EFFLUENT                                          |       |       |       |       |       |       |      |       |      |       |       |       |                |                |
| Discharge Days                                    | 31    | 28    | 31    | 30    | 31    | 30    | 31   | 31    | 30   | 31    | 30    | 31    | 365            | 366            |
| Maximum Daily Discharge Flow (L/s @ DS-4)         | 47    | 47    | 105   | 324   | 105   | 47    | 67   | 47    | 9    | 400   | 51    | 299   | 400            | 191            |
| Minimum Daily Discharge Flow (L/s @ DS-4)         | 9     | 17    | 47    | 83    | 9     | 13    | 1    | 9     | 6    | 17    | 35    | 25    | 1              | 1              |
| Monthly Average Daily Discharge Flow (L/s @ DS-4) | 25    | 26    | 69    | 205   | 46    | 28    | 26   | 18    | 8    | 137   | 46    | 100   | 61             | 27             |
| Total Volume Discharged (ML)                      | 66    | 62    | 185   | 531   | 124   | 73    | 69   | 49    | 19   | 367   | 119   | 268   | 1933           | 859            |
|                                                   |       |       |       |       |       |       |      |       |      |       |       |       |                |                |

## 6 **REFERENCES**

- Minnow Environmental Inc., 2016a. The Cycle 4 Study Design for the SRWMP, SAMP and TOMP. Prepared for Rio Algom Limited and Denison Mines Inc. February 2016.
- Minnow Environmental Inc., 2016b. Serpent River Watershed Cycle 4 (2010 to 2014) State of the Environment Report. Prepared for Rio Algom Limited and Denison Mines Inc. March 2016.
- Minnow Environmental Inc., 2017. Serpent River Watershed Cycle 4 (2010 to 2014) State of the Environment Report. Prepared for Rio Algom Limited and Denison Mines Inc. November 2017.
- Denison Mines Inc. and Rio Algom Limited. Serpent River Watershed Monitoring Program 2017 Annual Water Quality Report. (Rio Algom Limited and Denison Mines Inc.) March 2018.

# APPENDIX I Summary of Cycle 4 Changes

### Table 5.1: Cycle 4 TOMP substances and frequency of data collected (2015 to 2019)

# **D**enison Mines

|            |                                                |                                                   |           |      |    | Рага         | mete     | ers an               | d Fre                       | quen                           | ciesª | Ċ       |      |                          |                        |
|------------|------------------------------------------------|---------------------------------------------------|-----------|------|----|--------------|----------|----------------------|-----------------------------|--------------------------------|-------|---------|------|--------------------------|------------------------|
| TMA        | TOMP Stations                                  | Station<br>Type/Purpose                           | Elevation | Flow | Hq | Conductivity | Sulphate | Total Radium-<br>226 | Lime or NaOH<br>Consumption | Barium Chloride<br>Consumption | TSS   | Acidity | Iron | SAMP Metals <sup>b</sup> | Change                 |
|            | D-19                                           | Basin performance<br>(primary), ETP<br>operations | w         | D    | м  |              | Q        | м                    | м                           | м                              |       | Q       |      | Q                        | Flow W to D; pH D to M |
| <b> </b> _ | D-22 <sup>9</sup>                              | ETP operations                                    |           |      | W  |              | Q        | M                    |                             | М                              |       | Q       |      | Q                        |                        |
| Denison    | D-39                                           | Effluent                                          |           | W    | W  |              | М        | W                    |                             | d                              | W     |         |      | M°                       | Flow D to W            |
| 5          | D-2°                                           | Effluent                                          |           | ₩°   | W  |              | M        | W                    |                             |                                | W     |         |      | M°                       | Flow D to W            |
| Ľ          | D-25                                           | Basin performance<br>(secondary)                  |           |      | s  |              | s        | s                    |                             |                                |       | s       | s    |                          |                        |
|            | BH91-D1A,B, BH91-D3A,B,<br>BH91-DG4B, BH91-D9A | Groundwater                                       |           |      | Α  |              | Α        |                      |                             |                                |       | Α       | Α    |                          |                        |
|            | DS-29                                          | Basin performance<br>(primary), ETP<br>operations |           | D    | М  |              | Q        | М                    | м                           | м                              |       | ۵       |      | Q                        | pH D to M              |
|            | DS-3 <sup>9</sup>                              | ETP operations                                    |           |      | D  |              |          |                      |                             |                                |       |         |      |                          |                        |
| L          | DS-49                                          | Effluent                                          |           | Wc   | W  |              | М        | W                    |                             |                                | W     |         |      | Mc                       |                        |
| Stanrock   | DS-1 <sup>9</sup>                              | Additional pH control,<br>radium monitoring       |           | w    | w  |              |          | Q                    |                             |                                |       |         |      |                          |                        |
| a          | DS-69                                          | Additional pH control                             |           | W    | W  |              |          |                      |                             |                                |       |         |      |                          |                        |
| ſ          | D\$-5                                          | Seepages and surface water internal to TMA        |           | Q    | Q  | Q            |          |                      |                             |                                |       |         |      |                          |                        |
|            | PN-ST3-P3,5,6,8; BH91-SG2A,D                   | Porewater                                         |           |      | Α  |              | Α        |                      |                             |                                |       | Ā       | Α    |                          |                        |
|            | BH91-SG1A, BH98-16A, BH98-<br>15A, BH91-SG3A,B | Groundwater                                       |           |      | Α  |              | Α        |                      |                             |                                |       | A       | A    |                          |                        |

<sup>a</sup> D - Work days, W - Weekly, M - Monthly, S - Semi-annually, A - Annually, Q-Quarterly,

<sup>b</sup> SAMP metals are barium, cobalt, iron, manganese and uranium,

<sup>e</sup> Monitoring requirement of SAMP.

\* Spanish-American.

<sup>f</sup> During the snow-free period (April - November).

<sup>9</sup> Sampled when treatment plant is operating.

### Table 5.2: Cycle 4 SAMP stations, parameters and frequencies (2015 to 2019)

# **D**enison Mines

|             |                    |           |                                              |      | F  | requ     | ency       | â                           |                       |             |
|-------------|--------------------|-----------|----------------------------------------------|------|----|----------|------------|-----------------------------|-----------------------|-------------|
| TMA         | Location           | Туре      | Description                                  | Flow | Hq | Sulphate | Radium-226 | SAMP<br>metals <sup>b</sup> | Toxicity <sup>c</sup> | Change      |
|             | D-2 <sup>d,e</sup> | Primary   | Stollery Lake Outlet                         | W    | W  | М        | М          | М                           | S                     | flow D to W |
| Destaur     | D-3 <sup>d,e</sup> | Primary   | TMA-2 Effluent at Denison Mine access road   | W    | W  | М        | М          | м                           |                       | flow D to W |
| Denison     | D-9                | Seepage   | Seepage at Dam 17                            | Q    | Q  | Q        | Q          | Q                           |                       | none        |
|             | D-16               | Seepage   | Seepage at Dam 9                             | Q    | Q  | Q        | Q          | Q                           |                       | none        |
| 0           | DS-4               | Primary   | Orient Lake Outlet (Final Point of Control)  | W    | W  | М        | М          | М                           | S                     | none        |
| Stanrock    | DS-16              | Drainage  | Quirke Lake Delta                            | Q    | Q  | Q        | Q          | Q                           |                       | none        |
| <b>D</b> -( | SR-16              | Reference | Fox Creek at Highway 108                     |      | Q  | Q        | Q          | Q                           |                       |             |
| Reference   | SR-17              | Reference | Unnamed Creek from Lake Three at Highway 108 |      | Q  | Q        | Q          | Q                           |                       |             |

<sup>a</sup> D =daily, W = weekly, M = monthly, Q = quarterly, S = semi-annual (twice per year).

<sup>b</sup> SAMP metals - barium, cobalt, iron, manganese, uranium,

\* Toxicity includes: acute (Daphnia magna and rainbow trout) and sub lethal (Ceriodaphnia dubia) testing following Environment Canada (2000 and 2007 a, b) methods.

<sup>d</sup> This station is also TOMP effluent station and requirements have been harmonized to serve both programs.

\* Sampled when treatment plant is operating.

<sup>1</sup>P-14 will revert to P-36 upon ETP shut down.

<sup>9</sup> Flow is based on influent flow to the ETP at P-13.





March 9, 2016 via e-mail

Karina Lange Project Officer for Wastes and Decommissioning Division Canadian Nuclear Safety Commission 280 Slater Street P.O. Box 1046, Station B Ottawa, ON, K1P 5S9

Dear Ms. Lange:

#### Re: Serpent River Watershed Cycle 4 State of the Environment Report

Denison Mines Inc. (DMI) and Rio Algom Limited (RAL) are pleased to submit the Serpent River Cycle 4 State of the Environment (SOE) Report (2010 to 2014). The report presents and integrates the monitoring data obtained through the Elliot Lake closed mines monitoring programs, namely the Serpent River Watershed Monitoring Program (SRWMP), the Source Area Monitoring Program (SAMP) and the TMA Operational Monitoring Program (TOMP). The report covers the period of January 1, 2010 to December 31, 2014 although historical data has been considered for trend analysis.

This report represents the completion of the fourth cycle of the SRWMP. A complete list of all study design and interpretive reports prepared since the start of Cycle 1 is provided in Table 1. This table also summarizes the time frame covered for each cycle and the key changes to each of the monitoring programs over time.

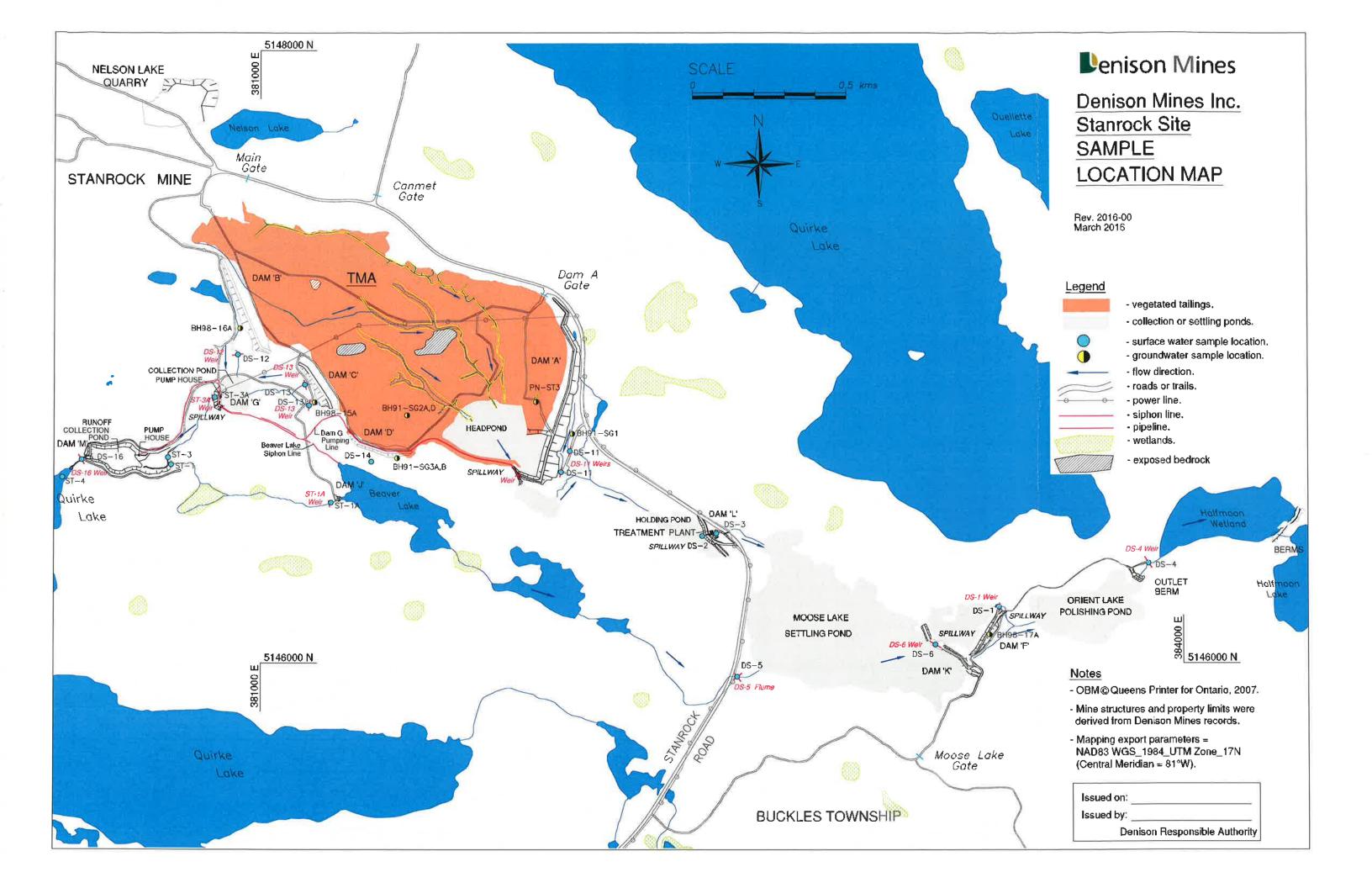
We are also distributing this Cycle 4 State of the Environment Report to the members of the Joint Regulatory Review Group (JRG; distribution attached). We look forward to your review of the report and the opportunity to address and any questions or comments you may have.

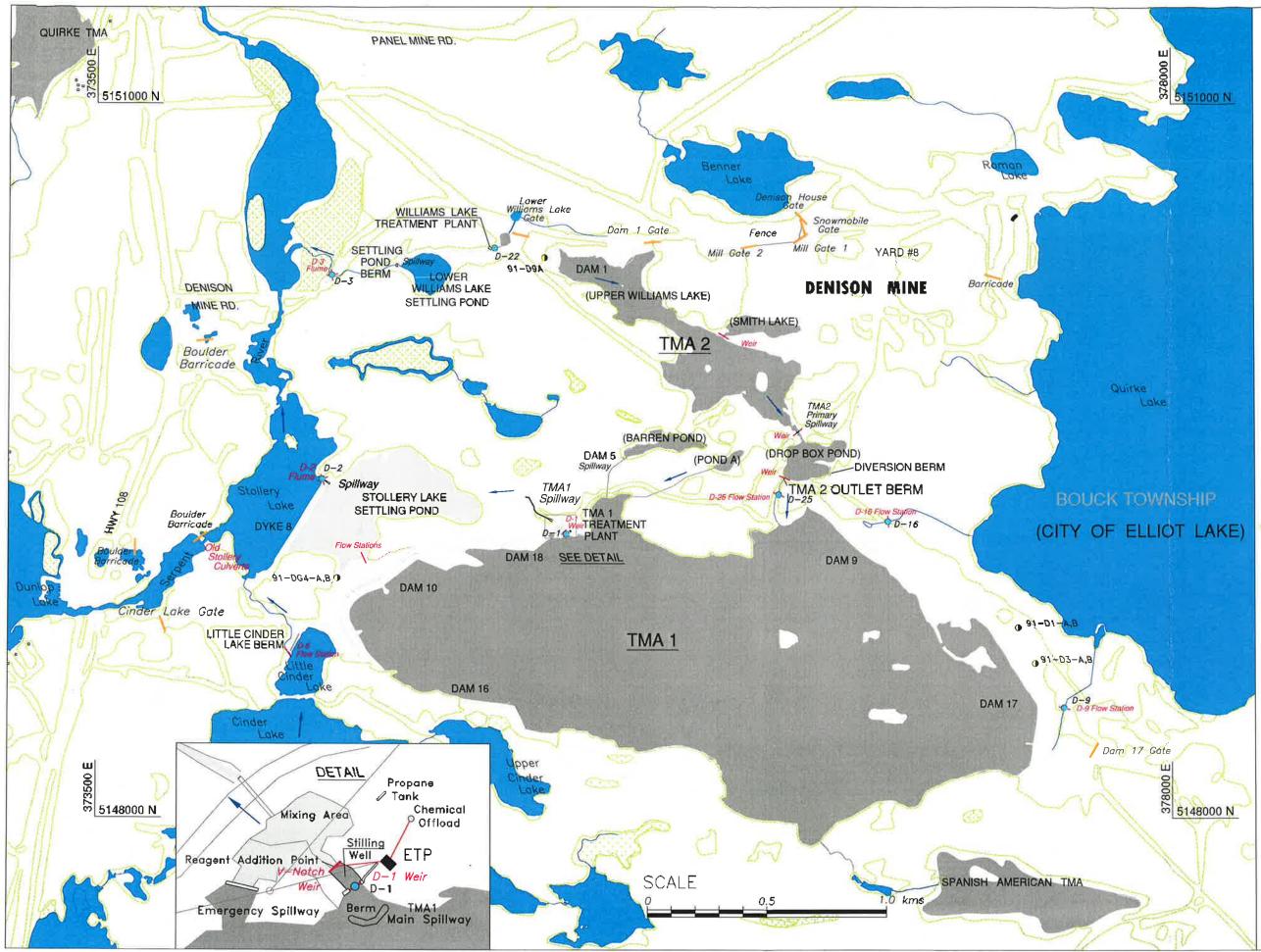
Yours very truly,

Denison Mines Inc.

**Rio Algom Limited** 

lan Ludgate. Manager Debbie Berthelot, Reclamation Manager


cc: Distribution List


### Table 1: Summary of the Elliot Lake monitoring programs; documents produced and changes to the programs during each cycle.

| Cycle   | Report Title                                                                              | Year                 | Period<br>Covered             | Description Of Changes To The Monitoring Programs Within Each Cycle                                                                                                                                                                                                                                                                                    |
|---------|-------------------------------------------------------------------------------------------|----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Serpent River Watershed Monitoring Program Framework<br>Document.                         | 1999                 |                               |                                                                                                                                                                                                                                                                                                                                                        |
|         | In-Basin Monitoring Program Report                                                        | 1999                 | historical<br>monitoring data |                                                                                                                                                                                                                                                                                                                                                        |
| Cycle 1 | Serpent River Watershed and In-Basin Monitoring<br>Program – Implementation Document.     | 1999                 |                               | SRWMP, IBMP, SAMP and TOMP were developed based on program objectives and existing monitoring data<br>collected over the period of operations and decommissioning.                                                                                                                                                                                     |
|         | Serpent River Watershed Monitoring Program -1999<br>Study                                 | 2001                 | 1999 - 2000                   |                                                                                                                                                                                                                                                                                                                                                        |
|         | In-Basin Monitoring Program for the Uranium Taitings<br>Areas - 1999 Study,               | 2001                 | 1999 - 2000                   |                                                                                                                                                                                                                                                                                                                                                        |
|         | Dverview of Elliot Lake Monitoring Programs and Source<br>Area Monitoring Program Design, | 2002                 |                               | Changes only SRWMP most associated with optimization after first cycle of program was complete:<br>- monitoring substances reduced to mine indicator parameters (barium, cobalt, DOC, iron, manganese, Ra-226,                                                                                                                                         |
|         | TMA Operational Monitoring Program Design (TOMP).                                         | 2002                 |                               | <ul> <li>selenium, silver, sulphate and uranium),</li> <li>addition of two lake reference stations (Summers and Semiwite lakes) and 3 stream reference areas (SR-16, SR-17)</li> </ul>                                                                                                                                                                 |
| 0       | Cycle 2 Study Design – Serpent River Watershed and In-<br>Basin Monitoring Programs.      | 2004                 | 2000 2004                     | and SR-18 );<br>- removat of shallow lakes for sediment and benthic sampling (Westner, Grassy, Halfmoom, Upper Cinder and Horne                                                                                                                                                                                                                        |
| Cycle 2 | Serpent River Watershed Monitoring Program: Cycle 2<br>Interpreative Report               | 2005                 | 2000 -2004                    | lakes);<br>- removal of some stream sediment and benthic stations (D-15, SC-03 and SR-07);                                                                                                                                                                                                                                                             |
|         | Serpent River In-Basin Monitoring Program: Cycle 2<br>Interpretive Report - 2004 Study.   | 2005                 |                               | <ul> <li>removal of Depot Lake and Serpent Harbour; addition of May Lake;</li> <li>the transfer of some SRWMP stations to SAMP or TOMP (N-12, ECA-131, P-11, MPE and Q-23);</li> <li>fish health assessment eliminated based on performance, fish community assessment added for McCabe Lake and</li> </ul>                                            |
|         | Serpent River Watershed State of the Environment                                          | 2009                 |                               | fish tissue monitoring reduced in scope based on performance.                                                                                                                                                                                                                                                                                          |
|         | Monitoring Framework For Closed Uranium Mines Near<br>Elliot Lake                         | 2009                 |                               | IBMP eliminated based on objectives of program being achieved.<br>SAMP and TOMP:                                                                                                                                                                                                                                                                       |
|         | In Basin Monitoring Program, Cycle 3 Study Design                                         | 2009                 |                               | <ul> <li>removal of silver, selenium based on performance and removal of conductivity based on redundancy with sulphate;</li> <li>DOC, hardness and flow added at selected stations.</li> </ul>                                                                                                                                                        |
| Cycle 3 | Serpent River Watershed Monitoring Program: Cycle 3<br>Study Design                       | 2009                 | 2005-2009                     | SRWMP:<br>- removal of selenium and sliver based on performance,                                                                                                                                                                                                                                                                                       |
| Суске з | Source Area Monitoring Program Revised Study Design                                       | 2009                 | 1003-1000                     | <ul> <li>removal of station SR-12, ELO, SR-09, SR-15, SR-02, SR-03, SR-11, P-01, QL-01 and SR-16 and SR-17 based on<br/>performance;</li> </ul>                                                                                                                                                                                                        |
|         | Tailing Management Area Monitoring Program (TOMP)<br>Revised Study Design                 | 2009                 |                               | <ul> <li>monthly monitoring frequency reduced to quarterly;</li> <li>sediment and benthic monitoring removed from Whiskey, Evans and Cinder Lakes based on redundancy,</li> <li>depositional streams (Q-20, D-6, SR-06, M-01 and SR-08) based on very high natural variability masking results;</li> </ul>                                             |
|         | Serpent River Watershed State of the Environment<br>Report.                               | <b>2</b> 01 <b>1</b> |                               | - fishing in McCabe Lake and fish tissue monitoring eliminated based on performance.                                                                                                                                                                                                                                                                   |
|         | Cycle 4 Study Design For the SRWMP, SAMP and TOMP.                                        | 2014ª                |                               | Minor changes to SAMP and TOMP.<br>SRWMP:<br>- elimination of reference stations SR-05, P-222 and SR-14;                                                                                                                                                                                                                                               |
| Cycle 4 | Serpent River Watershed Cycle 4 State of the<br>Environment                               | <b>2</b> 016         | 2010 - 2014                   | <ul> <li>removal of cobalt as substance for monitoring, addition of DOC;</li> <li>far-field lakes removed from the program (Hough, Pecors and McCarthy);</li> <li>removal of Rochester Lake as a sediment and benthic reference area;</li> <li>reduction in benthic and sediment sampling to 1/10 years based on measured deposition rates.</li> </ul> |

" Study Design was submitted to CNSC and JRG in 2014 but reissued with agency comments in  $2016_{\odot}$ 

APPENDIX II Site Maps, Sampling Requirements





# **Denison** Mines **Denison Mines Inc.** Denison SAMPLE LOCATION MAP

Rev. 2016-00 March 2016

#### Legend





- settling ponds.

- water covered tailings.

- surface water sample location.
- groundwater sample location.
- flow direction.
- roads or trails.
- power line.
- flow station or weir.
- pipeline.
- gate.
- wetlands.

### Notes

- OBM@Queens Printer for Ontario, 2008.
- Mine structures and property limits were derived from Denison Mines records,
- Mapping export parameters = NAD83 WGS\_1984\_UTM Zone\_17N (Central Meridian = 81°W).
- Contour Interval = 10 metres,
- File 9.3.2 (Sample Location Map).



Issued on:

Issued by:

**Denison Responsible Authority** 

Penison Mines

Stanrock C of A Sampling Requirements (Parameters & Frequency)

Performance Monitoring 2017

|                  |                          |                                          |         |      |    |              |          |                |         |            |          |     |      |        | SAMP I | CETALS    |         |
|------------------|--------------------------|------------------------------------------|---------|------|----|--------------|----------|----------------|---------|------------|----------|-----|------|--------|--------|-----------|---------|
| Sampling Station | Location / Description   | Coordinates                              | Purpose | Flow | Hd | Conductivity | Sulphate | tadium (Total) | Acidity | Alkalinity | Hardneas | DOC | Iron | Barium | Cobalt | Manganete | Uranium |
| DS-11            | Seepage of Dam A         | N 5146624 E 381977<br>N 5146692 E 382006 | MOE     | 4    | 4  | 4            |          |                |         |            |          |     |      |        |        |           |         |
| DS-12            | Seepage of Dam 8         | N 5147007 E 380926                       | MOE     | 4    | 4  | 4            |          |                |         |            |          |     |      |        |        |           |         |
| DS-13            | Seepage of Dam C         | N 5146909 E 381145<br>N 5146841 E 381158 | MOE     | 4    | 4  | 4            |          |                |         |            |          |     |      |        |        |           |         |
| DS-14            | Seepage of Dam AD        | N 5146658 E 381360                       | MOE     | 4    | 4  | 4            |          |                |         |            |          |     |      |        |        |           |         |
| DS-18            | Halfmoon Lake Outlet     | N 5145050 E 383761                       | MOE     | 4    | 4  |              | 4        | 4              |         |            |          |     | 4    | 4      | 4      | 4         | 4       |
| ST-1             | Downstream of Dam G      | N 5146648 E 380709                       | MOE     |      | 4  | 4            |          |                |         |            |          |     |      | [      |        |           |         |
| ST-1A            | Dam J at toe of dam      | N 5146524 E 381229                       | MOE     |      | 4  | 4            |          |                |         |            |          |     |      |        |        |           |         |
| ST-3             | Downstream of Dam G      | N 5146671 E 380699                       | MOE     |      | 4  | 4            |          |                |         |            |          |     |      |        |        |           |         |
| ST-3A            | Dam G at Toe of Dam      | N 5146867 E 380850                       | MOE     |      | 4  | 4            |          |                |         |            |          |     |      |        |        |           |         |
| ST-4             | Within Quirke Lake Delta | N 5146606 E 380354                       | MOE     |      | 4  | 4            | 4        | 4              | 4       | 4          | 4        | 4   | 4    | 4      | 4      | 4         | 4       |

# **D**enison Mines

Denison TOMP/SAMP Sampling Requirements (Parameters & Frequency)

### Surface Water Performance Monitoring 2017

|                  |                                                |                    |         |           |      |     |              |          |                               |     | 1       |          |      |        | SAMP I | METALS    | 5       |                        | Toxicity               | 0                                |
|------------------|------------------------------------------------|--------------------|---------|-----------|------|-----|--------------|----------|-------------------------------|-----|---------|----------|------|--------|--------|-----------|---------|------------------------|------------------------|----------------------------------|
| Sampiing Station | Location / Description                         | Coordinates        | Purpose | Elevation | Flow | Н   | Conductivity | Sulphate | <sup>226</sup> Radium (Total) | T33 | Actdity | Hardness | Iron | Berlum | Coball | Manganese | Urantum | Acute<br>Rainbow Trout | Acute<br>Dephale megne | Chronic<br>Ceriodaphnia<br>dubia |
| D-1              | TMA-1 Overflow                                 | N 5149191 E 375468 | TOMP    | 52        | 261  | 12  |              | 4        | 12                            |     | 4       |          | 4    | 4      | 4      | 4         | 4       |                        |                        |                                  |
| D-2              | TMA-1 Stollery Lake Overflow                   | N 5149421 E 374446 | TOMP    |           | 52   | 52  |              |          | 52                            | 52  |         |          |      |        |        |           |         |                        |                        |                                  |
| D-3              | TMA-2 Effluent                                 | N 5150260 E 374485 | TOMP    |           | 52   | 52  |              |          | 52                            | 52  |         |          |      |        |        |           |         |                        |                        |                                  |
| D-22             | TMA-2 ETP Influent                             | N 5150391 E 375169 | TOMP    |           |      | 52  |              | 4        | 12                            |     |         |          | 4    | 4      | 4      | 4         | 4       |                        |                        |                                  |
| D-25             | TMA-2 Overflow into TMA-1                      | N 5149357 E 376357 | TOMP    |           |      | 2   |              | 2        | 2                             |     | 2       |          | 2    |        |        |           |         |                        |                        |                                  |
| DS-1             | Stanrock Moose Lake Outlet to Orient Lake      | N 5146185 E 383401 | TOMP    |           | 52   | 52  |              |          | 4                             |     |         |          | -    |        |        |           |         |                        |                        |                                  |
| DS-2             | Stanrock ETP Influent                          | N 5146416 E 382437 | TOMP    |           | 261  | 12  |              | 4        | 12                            |     | 4       |          | 4    | 4      | 4      | 4         | 4       |                        |                        |                                  |
| DS-3             | Stanrock ETP Efiluent                          | N 5146424 E 382483 | TOMP    |           |      | 261 |              |          | 12                            |     |         |          |      |        |        | i i       |         |                        |                        |                                  |
| D\$-4            | Stanrock Final Discharge @ Orient Lake Outlet  | N 5146327 E 383888 | TOMP    |           | 52   | 52  |              |          | 52                            | 52  |         |          |      |        |        |           |         |                        |                        |                                  |
| DS-5             | Orient Creek Discharge into Moose Lake         | N 5145956 E 382549 | TOMP    |           | 4    | 4   | 4            |          |                               |     |         |          |      |        |        | (         |         |                        |                        |                                  |
| DS-6             | Moose Lake Narrows upstream of Dam K           | N 5146062 E 383194 | TOMP    |           | 52   | 52  |              |          |                               |     |         |          |      |        | -      |           |         |                        |                        |                                  |
| Denison T        | OMP Sites Sample Subtotal                      |                    |         |           | 836  | 655 |              | 14       | 210                           | 156 | 10      |          | 14   | 12     | 12     | 12        | 12      | 0                      | 0                      | 0                                |
|                  | L                                              |                    |         |           | - 8  |     |              |          | r                             | -   | r —     |          |      |        |        |           | r       |                        | -                      |                                  |
| D-2              | TMA-1 Stollery Lake Overflow                   | N 5149421 E 374446 | SAMP    |           | 52   | 52  |              | 12       | 12                            |     |         | 12       | 12   | 12     | 12     | 12        | 12      | 2                      | 2                      | 2                                |
| D-3              | TMA-2 Effluent                                 | N 5150280 E 374485 | SAMP    |           | 52   | 52  |              | 12       | 12                            |     |         | t2       | 12   | 12     | 12     | 12        | 12      |                        |                        |                                  |
| D-9              | Denison TMA-1; Dam 9 Seepage                   | N 5148462 E 377550 | SAMP    |           | 4    | 4   |              | 4        | 4                             |     |         | 4        | 4    | 4      | 4      | 4         | 4       |                        |                        |                                  |
| D-16             | Denison TMA-1; Dam 17 Seepage                  | N 5149244 E 376814 | SAMP    |           | 4    | 4   |              | - 4      | 4                             |     |         | 4        | 4    | 4      | 4      | 4         | 4       |                        |                        |                                  |
| DS-4             | Stanrock Final Discharge @ Orient Lake Outlet  | N 5146327 E 383888 | SAMP    |           | 52   | 52  |              | 12       | 12                            |     |         | 12       | 12   | 12     | 12     | 12        | 12      | 2                      | 2                      | 2                                |
| DS-16            | Stanrock TMA; Dam M Seepage; Quirke Lake Delta | N 5146663 E 380417 | SAMP    |           | 4    | 4   |              | 4        | 4                             |     |         | 4        | 4    | 4      | 4      | 4         | 4       |                        |                        |                                  |
| Denison S        | AMP Sites Sample Subtotal                      |                    |         |           | 168  | 168 |              | 48       | 48                            | Ð   | 0       |          | 48   | 40     | 48     | 48        | 48      | 4                      | 4                      | 4                                |
| Denison T        | otal Samples                                   | 1                  |         |           | 1006 | 823 | <u> </u>     | 62       | 258                           | 156 | 10      | 48       | 62   | 60     | 60     | 60        | 60      | 4                      | 4                      | 4                                |
|                  |                                                |                    |         |           |      |     |              | 10       |                               |     |         |          | 10   | 60     |        | - 10      | 10      |                        |                        |                                  |
| FB<br>BS         | Field Blank<br>Blind Sample                    |                    |         |           |      |     | -            | 12       | 12                            | 12  |         | 4        | 12   | 12     | 12     | 12        | 12      |                        |                        |                                  |
| 03               | Tours caulos                                   |                    |         |           |      |     |              | 12       | 12                            | 12  |         |          | 14   | 12     | 16     | 12        | 14      |                        |                        |                                  |

Penison Mines

### Denison Groundwater Sampling Requirements (Parameters & Frequency)

Performance Monitoring 2017

| Sampling Station | Location / Description   | Coordinates        | Туре                  | Purpose | Elevation | Conductivity | рН | Acidity | iron |
|------------------|--------------------------|--------------------|-----------------------|---------|-----------|--------------|----|---------|------|
| BH91-D1          | Dam 17 North Abutment    | N 5148801 E 377359 | Groundwater (2 wells) | TOMP    | 2         | 2            | 2  | 2       | 2    |
| BH91-D3          | Dam 17 North Valley, Toe | N 5148649 E 377430 | Groundwater (2 wells) | TOMP    | 2         | 2            | 2  | 2       | 2    |
| BH91-D9          | Dam 1 North Ridge, Toe   | N 5150352 E 375379 | Groundwater (1 well)  | TOMP    | 1         | 1            | 1  | 1       | 1    |
| BH91-DG4         | Below Dam 10             | N 5149006 E 374508 | Groundwater (1 well)  | TOMP    | 1         | 1            | 1  | 1       | 1    |
| BH91-SG2         | Upstream of Dam D        | N 5146809 E 381477 | Porewater (2 wells)   | TOMP    | 2         | 2            | 2  | 2       | 2    |
| PN-ST3           | Upstream of Dam A        | N 5146653 E 381897 | Porewater (4 wells)   | TOMP    | 4         | 4            | 4  | 4       | 4    |
| BH91-SG1         | Downstream of Dam A      | N 5146749 E 382014 | Groundwater (1 well)  | TOMP    | 1         | 1            | 1  | 1       | 1    |
| BH91-SG3         | Downstream of Dam D      | N 5146669 E 381444 | Groundwater (2 wells) | TOMP    | 2         | 2            | 2  | 2       | 2    |
| BH98-15          | Downstream of Dam C      | N 5146851 E 381177 | Groundwater (1 well)  | TOMP    | 1         | 1            | 1  | 1       | 1    |
| BH96-16          | Downstream of Dam B      | N 5147093 E 380933 | Groundwater (1 well)  | TOMP    | 1         | 1            | 1  | 1       | 1    |

# APPENDIX III Flagged Data & QA/QC Results

Denison Mines Inc.



| Location | n Analyte | Date                     | Low    | Hi          | Result                | Comment                                                                                                                                                   |
|----------|-----------|--------------------------|--------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-3      | TSS<br>U  | 2017-01-03<br>2017-01-10 | 1<br>0 | 2<br>0.0096 | 3 mg/L<br>0.0130 mg/L | Results are slightly above the high flag limits but still consistent with previous values over the last five years at this location.                      |
| ST-3     | рH        | 2017-01-12               | 3.2    | 3.8         | 3.1                   | Results is slightly below the low flag limit but still consistent with previous values over the last five years at this location.                         |
| BSDST    | Co        | 2017-02-14               | 0.0001 | 0.0010      | 0.0019 mg/L           | Result is above the high flag limit , confirmed by repeat<br>analysis, but still consistent with previous values in the<br>last 6 years at this location. |
|          | Fe        | 2017-02-14               | 0      | 0.61        | 0.62 mg/L             | Result is above the high flag limit, confirmed by repeat<br>analysis, but still consistent with previous values in the<br>last 5 years at this location.  |
|          | Mn        | 2017-02-14               | 0      | 0.283       | 0.406 mg/L            | Result is above the high flag limit, confirmed by repeat<br>analysis, but still consistent with previous values in the<br>last 4 years at this location.  |
| D-13     | FLOW      | 2017-02-14               | 6.1    | 16.3        | 16.8 L/s              | Result is slightly above the high flag limit but still consistent with previous values in the last five years at this location.                           |



| Location | n Analyte | Date                     | Low         | Hi             | Result                   | Comment                                                                                                                                                             |
|----------|-----------|--------------------------|-------------|----------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BSDST    | TSS       | 2017-03-21               | 1           | 1              | 2 mg/L                   | Result is slightly above the high flag limit but still consistent with previous values in the last year at this location.                                           |
| D-2      | FLOW      | 2017 <b>-03-14</b>       | 0           | 142            | 173 <b>L/s</b>           | Result is slightly above the high flag limit but still consistent with seasonal values at this location.                                                            |
| DS-2     | Ra        | 2017-03-21               | 0.136       | 0.234          | 0.100 Bq/L               | Result is slightly below the low flag limit but still consistent with previous values in the last two years at this location.                                       |
| DS-4     | Co<br>Fe  | 2017-03-21<br>2017-03-21 | 0.0003<br>0 | 0.0008<br>0.24 | 0.0010 mg/L<br>0.25 mg/L | Results are slightly above the high flag limits but still consistent with previous values in the last two years at this location.                                   |
| DS-6     | FLOW      | 2017-03-08               | 0           | 224            | 232 L/s                  | Result is slightly above the high flag limit but still consistent with seasonal values at this location.                                                            |
| D-1      | Ra        | 2017-04-11               | 0.691       | 3.125          | 0.581 Bq/L               | Result is a 7-year low but only slightly below the low flag limit. Concentration is consistent with seasonal low values during heavy rain and snowmelt and dilution |
|          | SO4       | 2017-0 <b>4</b> -11      | 23.3        | 177.6          | 16 mg/L                  | Result is slightly below the low flag limit but still<br>consistent with seasonal values and dilution during rain<br>and snowmelt.                                  |

### SAMP/TOMP Flagged Data 2017



100

| Locatio | n Analyte | Date       | Low            | Hi            | Result    | Comment                                                                                                                        |
|---------|-----------|------------|----------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| D-2     | FLOW      | 2017-04-11 | <sup>3</sup> 0 | 168. <b>4</b> | 194 L/s   | Result is slightly above the high flag limit but consistent with seasonal values during rain and snowmelt.                     |
| D-25    | Fe        | 2017-04-19 | 0.18           | 0.19          | 0.32 mg/L | Result is slightly above the high flag limit but still consistent with previous values in the last two years at this location. |
| D-3     | Fe        | 2017-04-11 | 0              | 0.10          | 0.11 mg/L | Result is slightly above the high flag limit but still consistent with previous values in the last two years at this location. |
|         | FLOW      | 2017-04-04 | 0              | 33            | 96 L/s    | Results are slightly above the high flag limits but                                                                            |
|         |           | 2017-04-11 | 0              | 33            | 73 L/s    | consistent with seasonal values during rain and snowmelt.                                                                      |
| DS-1    | FLOW      | 2017-04-03 | 0              | 177           | 195 L/s   | Results are slightly above the high flag limits but                                                                            |
|         |           | 2017-04-05 | 0              | 177           | 262 L/s   | consistent with seasonal values during rain and                                                                                |
|         |           | 2017-04-06 | 0              | 177           | 214 L/s   | snowmelt.                                                                                                                      |
|         |           | 2017-04-10 | 0              | 177           | 717 L/s   |                                                                                                                                |
|         |           | 2017-04-12 | 0              | 177           | 181 L/s   |                                                                                                                                |
|         |           | 2017-04-17 | 0              | 177           | 181 L/s   |                                                                                                                                |
| DS-16   | FLOW      | 2017-04-04 | 0              | 5             | 17 L/s    | Result is above the high flag limit but consistent with seasonal values during rain and snowmelt.                              |



| Location | n Analyte | Date                                                                                                                                     | Low                                       | Hi                                                                 | Result                                                                                                     | Comment                                                                                                                           |
|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| DS-4     | Co        | 2017-04-12                                                                                                                               | 0.0005                                    | 0.0005                                                             | 0.0008 mg/L                                                                                                | Result is slightly above the high flag limit but still consistent with previous values over the last two years at this location.  |
|          | FLOW      | 2017-04-04<br>2017-04-12<br>2017-04-18                                                                                                   | 0<br>0<br>0                               | 124.4<br>124.4<br>124.4                                            | 324 L/s<br>255 L/s<br>158 L/s                                                                              | Results are slightly above the high flag limits but consistent with seasonal values during rain and snowmelt.                     |
|          | TSS       | 2017-04-04                                                                                                                               | 1                                         | 1                                                                  | 2 mg/L                                                                                                     | Result is slightly above the high flag limit but still<br>consistent with previous values over the last year at this<br>location. |
| DS-6     | FLOW      | 2017-04-03<br>2017-04-05<br>2017-04-05<br>2017-04-06<br>2017-04-07<br>2017-04-10<br>2017-04-12<br>2017-04-13<br>2017-04-17<br>2017-04-20 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 201<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201 | 232 L/s<br>261 L/s<br>356 L/s<br>232 L/s<br>203 L/s<br>203 L/s<br>203 L/s<br>203 L/s<br>203 L/s<br>203 L/s | Results are slightly above the high flag limits but<br>consistent with seasonal values during rain and<br>snowmelt.               |

## SAMP/TOMP Flagged Data 2017

.



| Locatio | n Analyte | Date       | Low | Hi    | Result     | Comment                                                                                                                                                                             |
|---------|-----------|------------|-----|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D-25    | FLOW      | 2017-05-09 | 0   | 17    | 174 L/s    | Result is above the high flag limit but consistent with seasonal values during rain and snowmelt.                                                                                   |
| D-1     | FLOW      | 2017-06-01 | 0   | 123   | 134 L/s    | Results are slightly above the high flag limits but                                                                                                                                 |
|         |           | 2017-06-02 | 0   | 123   | 126 L/s    | consistent with operational adjustments made in                                                                                                                                     |
|         |           | 2017-06-03 | 0   | 123   | 125 L/s    | response to rising water levels.                                                                                                                                                    |
| DS-6    | pН        | 2017-06-27 | 6.2 | 8.3   | 8.4        | Results are slightly above the high flag limits but                                                                                                                                 |
|         | ,         | 2017-06-28 | 6.2 | 8.3   | 8.4        | consistent with operational adjustments in pH set point upstream at the Stanrock treatment plant.                                                                                   |
| ST-1    | рН        | 2017-07-12 | 3.6 | 4.3   | 5.0        | Result is a historic high, confirmed by repeat<br>measurement, but consistent with a gradually increasing<br>trend. Will continue to monitor at the current quarterly<br>frequency. |
| D-3     | Fe        | 2017-08-08 | 0   | 0.13  | 0.27 mg/L  | Results are above the high flag limits, confirmed by                                                                                                                                |
|         | Mn        | 2017-08-08 | 0   | 0.014 | 0.031 mg/L | repeat analysis, but still consistent with previous values over the last five years at this location.                                                                               |
| D-2     | FLOW      | 2017-10-25 | 0   | 190   | 203 L/s    | Result is above the high flag limit but consistent with seasonal values at this location.                                                                                           |



| Locatio | n Analyte | Date       | Low    | Hì    | Result     | Comment                                                                                                                          |
|---------|-----------|------------|--------|-------|------------|----------------------------------------------------------------------------------------------------------------------------------|
| D-3     | Ва        | 2017-10-10 | 0.076  | 0.301 | 0.333 mg/L | Result is slightly above the high flag limit but consistent with previous values in the last two years.                          |
|         | FLOW      | 2017-10-25 | 0      | 63    | 92 L/s     | Result is above the high flag limit but consistent with seasonal values at this location.                                        |
| DS-1    | FLOW      | 2017-10-24 | 0      | 258   | 416 L/s    | Results are above the high flag limits but consistent with                                                                       |
|         |           | 2017-10-25 | 0      | 258   | 356 L/s    | seasonal values at this location.                                                                                                |
| DS-16   | FLOW      | 2017-10-25 | 0      | 6.4   | 19.4 L/s   | Result is above the high flag limit but consistent with seasonal values at this location.                                        |
| DS-4    | FLOW      | 2017-10-25 | 0      | 219   | 400 L/s    | Result is above the high flag limit but consistent with seasonal values at this location.                                        |
| DS-4    | Ra        | 2017-10-25 | 0      | 0.151 | 0.193 Bq/L | Result is a nine-year high. Operational adjustments made in response reduced concentrations to 0.069 mg/L by the following week. |
| DS-6    | FLOW      | 2017-10-24 | 0      | 253   | 356 L/s    | Results are above the high flag limits but consistent with                                                                       |
|         |           | 2017-10-25 | 0<br>0 | 253   | 356 L/s    | seasonal values at this location.                                                                                                |



| Location Ar | nalyte Date    | Low  | Hi    | Result     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|----------------|------|-------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FBDST Fe    | e 2017-10-12   | 0.02 | 0.03  | 0.04 mg/L  | Result, which is typically below the detection limit, is slightly above the high flag limit and confirmed by repeat analysis. However, the value is at the laboratory data quality objective of 0.04 mg/L. No further action required.                                                                                                                                                                                                   |
| FBDST SC    | 2017-10-12     | 0    | 0.3   | 0.7 mg/L   | Result, which is typically below the detection limit, is<br>above the high flag limit and confirmed by repeat<br>analysis. This is inconsistent with field blank water quality<br>and well above the laboratory Data quality objective of<br>0.2 mg/L. The value cannot be attributed to laboratory<br>error so it is likely the sample bottle was contaminated.<br>All other field blank parameters met the data quality<br>objectives. |
| D-3 FL      | .OW 2017-12-05 | 0    | 73    | 149 L/s    | Result is above the high flag limit but consistent with heavy rain and some snowmelt.                                                                                                                                                                                                                                                                                                                                                    |
| DS-1 FL     | .OW 2017-12-05 | 0    | 306   | 416 L/s    | Result is above the high flag limit but consistent with heavy rain and some snowmelt.                                                                                                                                                                                                                                                                                                                                                    |
| DS-16 FL    | .OW 2017-12-05 | 0    | 8     | 14 L/s     | Result is above the high flag limit but consistent with heavy rain and some snowmelt.                                                                                                                                                                                                                                                                                                                                                    |
| DS-4 Ba     | a 2017-12-12   | 0    | 0.079 | 0.090 mg/L | Result is slightly above the high flag limit but still consistent with previous values in the last two years.                                                                                                                                                                                                                                                                                                                            |



| Location | n Analyte | Date       | Low | Hi   | Result     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-----------|------------|-----|------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DS-4     | Fe        | 2017-12-12 | 0   | 0.31 | '0.41 mg/L | Result is an 18-year high, confirmed by repeat analysis,<br>but close to previous values in the last three years. The<br>result is representative of the iron precipitate found in the<br>upstream Moose Lake Polishing Pond (DS-1) where a<br>period of heavy rain caused a sudden increase in flow<br>under ice cover resulting in short circuiting and flushing.<br>Iron concentrations decrease to 0.22 mg/L by the<br>following month. |
|          | FLOW      | 2017-12-05 | 0   | 285  | 299 L/s    | Result is above the high flag limit but consistent with heavy rain and some snowmelt.                                                                                                                                                                                                                                                                                                                                                       |

### SAMP and TOMP DATA QUALITY REPORTING Field Blank 2017 Revision 2016-01

# **D**enison Mines

Page 1 of 1

Registry: RC8.5.4-02

|                | m                 |     | TSS<br>mg/L | Hardness<br>mg/L as CaCO3 | Uranium<br>mg/L | Sulphate<br>mg/L | Radium<br>Bq/L | Barium<br>mg/L | Cobalt<br>mg/L | lron<br>mg/L | Manganese<br>mg/L |
|----------------|-------------------|-----|-------------|---------------------------|-----------------|------------------|----------------|----------------|----------------|--------------|-------------------|
| Blank Criteria |                   |     |             |                           |                 |                  |                |                |                |              |                   |
|                | SAMP <sup>1</sup> | -   | 34          | 1.0                       | 0.001           | 0.2              | 0.01           | 0.01           | 0.001          | 0.04         | 0.004             |
|                | TOMP <sup>1</sup> | Ħ.  | 2           |                           | 0.001           | 0.2              | 0.01           | 0.01           | 0.001          | 0.04         | 0.004             |
| FBDST          | 2017.01           | 6.9 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.02           | 6.2 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.03           | 7.0 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.04           | 6.3 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.05           | 6.4 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.06           | 6.1 | 1           | < 0.5                     | < 0.0005        | 0.2              | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.07           | 6.3 | 1           | < 0.5                     | < 0.0005        | < 0.1            | 0.009          | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.08           | 6.5 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.09           | 6.5 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.10           | 6.0 | 1           | < 0.5                     | < 0.0005        | 0.7              | < 0.007        | < 0.005        | < 0.0005       | 0.04         | 0.002             |
| FBDST          | 2017.11           | 6.5 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| FBDST          | 2017.12           | 6.5 | 1           | < 0.5                     | < 0.0005        | < 0.1            | < 0.007        | < 0.005        | < 0.0005       | < 0.02       | < 0.002           |
| Count          |                   | 12  | 12          | 12                        | 12              | 12               | 12             | 12             | 12             | 12           | 12                |
| # Exceedance   | es                | 0   | 0           | 0                         | 0               | 1                | 0              | 0              | 0              | 0            | 0                 |
| Average        |                   | 6.4 | 1           | < 0.5                     | < 0.0005        | 0.2              | 0.007          | < 0.005        | < 0.0005       | 0.02         | 0.002             |
| Max            |                   | 7.0 | 1           | < 0.5                     | < 0.0005        | 0.7              | 0.009          | < 0.005        | < 0.0005       | 0.04         | 0.002             |
| Min            |                   | 6.0 | 1           | < 0.5                     | < 0.0005        | 0.1              | 0.007          | < 0.005        | < 0.0005       | 0.02         | 0.002             |

сX.

1 SAMP and TOMP field Precision criteria taken from Table 5.2 of the Cycle 4 Study Design for SRWMP, SAMP and TOMP (Minnow, 2016)

Bold Indicates an exceedance of the Blank Criteria

#### SAMP and TOMP DATA QUALITY REPORTING Field Precision 2017 Revision 2016-01

#### Registry: RC8.5.4-02

| Penison | Mines |
|---------|-------|
|---------|-------|

Page 1 of 2

| Location | Date    | рН  | TSS  | Hardness | Sulphate | Radium<br>(total) | Uranium | Barium | Cobalt   | iron | Manganese |
|----------|---------|-----|------|----------|----------|-------------------|---------|--------|----------|------|-----------|
|          |         |     | mg/L | mg/L     | mg/L     | Bq/L              | mg/L    | mg/L   | mg/L     | mg/L | mg/L      |
| D-2      | 2017.01 | 6.9 | < 1  | 376_0    | 320,0    | 0.045             | 0.0550  | 0.057  | 0.0009   | 0.31 | 0.214     |
| BSDST    |         | 6.9 | 1    | 377.0    | 320.0    | 0.032             | 0.0576  | 0.042  | 0.0008   | 0.31 | 0.193     |
| variance |         | 0%  | 0%   | 0%       | 0%       | 34%               | 5%      | 30%    | 12%      | 0%   | 10%       |
| D-2      | 2017.02 | 7.1 | 1    | 421_0    | 320.0    | 0.046             | 0.0615  | 0.067  | 0.0011   | 0.44 | 0.251     |
| BSDST    |         | 7.0 | 1    | 419.0    | 320.0    | 0.092             | 0.0620  | 0.141  | 0.0019   | 0.62 | 0.406     |
| variance |         | 1%  | 0%   | 0%       | 0%       | 67%               | 1%      | 71%    | 63%      | 34%  | 47%       |
| D-2      | 2017.03 | 7.0 | 1    | 298.0    | 200.0    | 0.292             | 0,0414  | 0.409  | 0.0007   | 0.54 | 0,168     |
| BSDST    |         | 7.0 | 2    | 301.0    | 200.0    | 0.302             | 0.0433  | 0.406  | 0.0007   | 0.56 | 0.162     |
| variance |         | 0%  | 67%  | 1%       | 0%       | 3%                | 4%      | 1%     | 0%       | 4%   | 4%        |
| D-2      | 2017.04 | 7.0 | 1    | 209.0    | 140.0    | 0.174             | 0.0239  | 0.261  | 0.0007   | 0.61 | 0.172     |
| BSDST    |         | 6.9 | 1    | 177.0    | 120.0    | 0.125             | 0,0193  | 0,198  | 0.0006   | 0.49 | 0.138     |
| variance |         | 1%  | 0%   | 17%      | 15%      | 33%               | 21%     | 27%    | 15%      | 22%  | 22%       |
| D-2      | 2017.05 | 7.5 | 1    | 356.0    | 240,0    | 0,121             | 0,0393  | 0,161  | 0.0006   | 0.32 | 0.182     |
| BSDST    |         | 7.5 | 2    | 354.0    | 230.0    | 0.115             | 0.0408  | 0.161  | 0.0006   | 0.30 | 0.183     |
| variance |         | 0%  | 67%  | 1%       | 4%       | 5%                | 4%      | 0%     | 0%       | 6%   | 1%        |
| D-2      | 2017.06 | 7.5 | < 1  | 297.0    | 220.0    | 0.150             | 0.0375  | 0.217  | < 0.0005 | 0,15 | 0.129     |
| BSDST    |         | 7.5 | 1    | 292.0    | 220.0    | 0.122             | 0.0387  | 0.226  | < 0.0005 | 0.14 | 0.119     |
| variance |         | 0%  | 0%   | 2%       | 0%       | 21%               | 3%      | 4%     | 0%       | 7%   | 8%        |
| D-2      | 2017.07 | 7.3 | 1    | 290.0    | 200.0    | 0.108             | 0.0335  | 0.235  | < 0.0005 | 0,13 | 0.117     |
| BSDST    |         | 7.4 | 1    | 295.0    | 210.0    | 0.130             | 0.0335  | 0.245  | < 0.0005 | 0:13 | 0.117     |
| variance |         | 1%  | 0%   | 2%       | 5%       | 18%               | 0%      | 4%     | 0%       | 0%   | 0%        |
| D-2      | 2017,08 | 7.2 | < 1  | 281.0    | 220.0    | 0.100             | 0.0326  | 0.147  | < 0.0005 | 0.14 | 0.089     |
| BSDST    |         | 7.3 | 1    | 267.0    | 220.0    | 0.089             | 0.0317  | 0.148  | < 0.0005 | 0.12 | 0.097     |
| variance |         | 1%  | 0%   | 5%       | 0%       | 12%               | 3%      | 1%     | 0%       | 15%  | 9%        |
| D-2      | 2017.09 | 7.5 | 2    | 294.0    | 240.0    | 0.064             | 0.0388  | 0.105  | < 0.0005 | 0.20 | 0.125     |
| BSDST    |         | 7.5 | 1    | 300.0    | 240.0    | 0.059             | 0.0367  | 0.094  | < 0.0005 | 0.13 | 0.050     |
| variance |         | 0%  | 67%  | 2%       | 0%       | 8%                | 6%      | 11%    | 0%       | 42%  | 86%       |

#### SAMP and TOMP DATA QUALITY REPORTING Field Precision 2017 Revision 2016-01

## Penison Mines

Page 2 of 2

Registry: RC8.5.4-02

| Location              | Date    | рН  | TSS  | Hardness | Sulphate | Radium<br>(total) | Uranium | Barium | Cobalt   | Iron | Manganese |
|-----------------------|---------|-----|------|----------|----------|-------------------|---------|--------|----------|------|-----------|
|                       |         |     | mg/L | mg/L     | mg/L     | Bq/L              | mg/L    | mg/L   | mg/L     | mg/L | mg/L      |
| D-2                   | 2017.10 | 7.4 | < 1  | 349.0    | 270.0    | 0.055             | 0.0399  | 0.097  | < 0.0005 | 0.12 | 0.109     |
| BSDST                 |         | 7.4 | < 1  | 357.0    | 260.0    | 0.043             | 0.0386  | 0.087  | < 0.0005 | 0.11 | 0.092     |
| variance              |         | 0%  | 0%   | 2%       | 4%       | 24%               | 3%      | 11%    | 0%       | 9%   | 17%       |
| D-2                   | 2017.11 | 7.5 | < 1  | 278.0    | 210.0    | 0.205             | 0.0328  | 0.333  | 0.0006   | 0.13 | 0.178     |
| BSDST                 |         | 7.4 | < 1  | 282.0    | 210.0    | 0.212             | 0.0313  | 0.329  | 0.0007   | 0.14 | 0,186     |
| variance              |         | 1%  | 0%   | 1%       | 0%       | 3%                | 5%      | 1%     | 15%      | 7%   | 4%        |
| D-2                   | 2017.12 | 7.3 | 1    | 221.0    | 190.0    | 0.231             | 0.0318  | 0.370  | 0.0006   | 0.20 | 0.150     |
| BSDST                 |         | 7.2 | 1    | 224.0    | 190.0    | 0-192             | 0.0324  | 0.379  | 0.0006   | 0.21 | 0,151     |
| variance              |         | 1%  | 0%   | 1%       | 0%       | 18%               | 2%      | 2%     | 0%       | 5%   | 1%        |
| Count                 |         | 12  | 12   | 12       | 12       | 12                | 12      | 12     | 12       | 12   | 12        |
| Average               |         | 1%  | 17%  | 3%       | 2%       | <b>2</b> 1%       | 5%      | 14%    | 8%       | 13%  | 17%       |
| Max                   |         | 1%  | 67%  | 17%      | 15%      | 67%               | 21%     | 71%    | 53%      | 42%  | 86%       |
| Min                   |         | 0%  | 0%   | 0%       | 0%       | 3%                | 0%      | 0%     | 0%       | 0%   | 0%        |
| Criteria <sup>1</sup> |         | 20% | 20%  | 20%      | 20%      | 20%               | 20%     | 20%    | 20%      | 20%  | 20%       |
| # Exceedanc           | es      | 0   | 3    | 0        | 0        | 5                 | 1       | 3      | 1        | 3    | 3         |

<sup>1</sup> SAMP and TOMP field Precision criteria taken from Table 5.2 of the Cycle 4 Study Design for SRWMP, SAMP and TOMP (Minnow, 2016)

Bold indicates an exceedance of the field precision criteria

### SAMP and TOMP DATA QUALITY REPORTING Groundwater Field Precision Revision 2016.01

### Registry: RF8.5.4-02

Page 1 of 1

37

**D**enison Mines

| Location              | Date    | pHF | Sulphate | Acidity | Iron    |
|-----------------------|---------|-----|----------|---------|---------|
|                       |         |     | mg/L     | mg/L    | mg/L    |
| 98-15A                | 2017.08 | 5.4 | 2400.0   | 1040.0  | 651.00  |
| BSD-GW2               |         | 6.5 | 2500.0   | 1090.0  | 700.00  |
| variance              |         | 18% | 4%       | 5%      | 7%      |
| BH91 DG4B             | 2017.08 | 6.2 | 730.0    | < 1.0   | 21.90   |
| BSD-GW3               |         | 6.2 | 820.0    | < 1.0   | 21.70   |
| variance              |         | 0%  | 12%      | 0%      | 1%      |
| BH91-SG2A             |         | 6.3 | 4400.0   | 2450.0  | 1450.00 |
| BSD GW4               | 2018.08 | 6.4 | 4400.0   | 2370.0  | 1430.00 |
| variance              |         | 2%  | 0%       | 3%      | 1%      |
| Count                 |         | 3   | 3        | 3       | 3       |
| Average               |         | 6%  | 5%       | 3%      | 3%      |
| Min                   |         | 0%  | 0%       | 0%      | 1%      |
| Max                   |         | 18% | 12%      | 5%      | 7%      |
| Criteria <sup>1</sup> |         | 20% | 20%      | 20%     | 20%     |
| # Exceedances         | ;       | 0   | 0        | 0       | 0       |

1. SAMP and TOMP field Precision criteria taken from Table 5.2 of the Cycle 4 Study Design for SRWMP, SAMP and TOMP (Minnow, 2016) Bold Indicates an exceedance of the field precision criteria

## SAMP and TOMP DATA QUALITY REPORTING Groundwater Field Blank Revision 2016.01

Report Form: RF8.5.4-01

# Penison Mines

Page 1 of 1

| Date           |         | Acidity             | Sulphate | pHF | Iron   |
|----------------|---------|---------------------|----------|-----|--------|
|                |         | mg/L                | mg/L     |     | mg/L   |
| Blank Criteria |         | TOMP <sup>1</sup> 2 |          |     | 0.04   |
| 2017.08        | FBD-GW2 | < 1                 | 0.2      | 5.6 | 0.08   |
| 2017.08        | FBD-GW3 | 4                   | 0.2      | 5.7 | 0.07   |
| 2017.08        | FBD-GW4 | 3                   | < 0.1    | 5.5 | < 0.02 |
| Count          |         | 3                   | 3        | 3   | 3      |
| # Exceedances  | 5       | 2                   | 0        | 0   | 2      |
| Average        |         | 3                   | 0.2      | 5.6 | 0.06   |
| Max            |         | 4                   | 0.2      | 5.7 | 0.08   |
| Min            |         | < 1                 | < 0.1    | 5.5 | 0.02   |

1 SAMP and TOMP field Precision criteria taken from Table 5.2 of the Cycle 4 Study Design for SRWMP, SAMP and TOMP (Minnow, 2016) Bold Indicates an exceedance of the Blank Criteria APPENDIX IV Water Quality Results

#### Station: BSDST

| Parameter                        | Flow  | Hardness | pH                   | S04   | TSS  | Ra               | Ba               | Co                  | Fe                     | Mn               | U      |  |
|----------------------------------|-------|----------|----------------------|-------|------|------------------|------------------|---------------------|------------------------|------------------|--------|--|
| Units                            | L/s   | mg/L     | pH units             | mg/L  | mg/L | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L   |  |
| Assessment Criteria <sup>A</sup> | -     | -        | 5.2/6.5 <sup>B</sup> | -c    | 12   | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015  |  |
| 2017-01                          | 17    | 377.0    | 6.9                  | 320   | 1    | 0.032            | 0.042            | 0.0008              | 0.31                   | 0.193            | 0.0576 |  |
| 2017-02                          | 9     | 419.0    | 7                    | 320   | 1    | 0.092            | 0.141            | 0.0019              | 0.61                   | 0.406            | 0.062  |  |
| 2017-03                          | 240   | 301.0    | 7                    | 200   | 2    | 0.302            | 0.406            | 0.0007              | 0.56                   | 0.162            | 0.0433 |  |
| 2017-04                          | 194   | 177.0    | 6.9                  | 120   | 1    | 0.125            | 0.198            | 0.0006              | 0.49                   | 0.138            | 0.0193 |  |
| 2017-05                          | 52    | 354.0    | 7.5                  | 230   | 2    | 0.115            | 0.161            | 0.0006              | 0.3                    | 0.183            | 0.0408 |  |
| 2017-06                          | 17    | 292.0    | 7.5                  | 220   | 1    | 0.122            | 0.226            | < 0.0005            | 0.14                   | 0.119            | 0.0387 |  |
| 2017-07                          | 69    | 295.0    | 7.4                  | 210   | 1    | 0.13             | 0.245            | < 0.0005            | 0.13                   | 0.117            | 0.0335 |  |
| 2017-08                          | 17    | 267.0    | 7.3                  | 220   | 1    | 0.089            | 0.148            | < 0.0005            | 0.12                   | 0.097            | 0.0317 |  |
| 2017-09                          | 14    | 300.0    | 7.5                  | 240   | 1    | 0.059            | 0.094            | < 0.0005            | 0.13                   | 0.05             | 0.0367 |  |
| 2017-10                          | 16    | 357.0    | 7.4                  | 260   | <1   | 0.043            | 0.087            | < 0.0005            | 0.11                   | 0.092            | 0.0386 |  |
| 2017-11                          | 81    | 282.0    | 7.4                  | 210   | <1   | 0.212            | 0.329            | 0.0007              | 0.14                   | 0.186            | 0.0313 |  |
| 2017-12                          | 81    | 224.0    | 7.2                  | 190   | 1    | 0.192            | 0.379            | 0.0006              | 0.2                    | 0.151            | 0.0324 |  |
| Count                            | 12    | 12       | 12                   | 12    | 12   | 12               | 12               | 12                  | 12                     | 12               | 12     |  |
| High                             | 240   | 419.0    | 7.5                  | 320   | 2    | 0.302            | 0.406            | 0.0019              | 0.61                   | 0.406            | 0.062  |  |
| Low                              | 9     | 177.0    | 6.9                  | 120   | <1   | 0.032            | 0.042            | < 0.0005            | 0.11                   | 0.05             | 0.0193 |  |
| Mean                             | 67.25 | 303.8    | 7.3                  | 228.3 | 1    | 0.126            | 0.205            | 0.0007              | 0.27                   | 0.158            | 0.0388 |  |
| High Limit                       |       |          | 8.5                  | -     | 10   | 1                | 1                | 0.0025              | 0.49                   | 0.8              | 0.015  |  |
| Lim Ex                           | 0     | 0        | 0                    | 0     | 0    | 0                | 0                | 0                   | 2                      | 0.0              | 12     |  |
| Frequency                        | 0%    | 0%       | 0%                   | 0%    | 0%   | 0%               | 0%               | 0%                  | 17%                    | 0%               | 100%   |  |
| 10x Lim Ex                       | 0     | 0        | 0                    | 0     | 0    | 0                | 0                | 0                   | 0                      | 0                | 0      |  |
| Frequency                        | 0%    | 0%       | 0%                   | 0%    | 0%   | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%     |  |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and since the annual average for hardness for 2017 exceeds the highest hardness tested (i.e. upper bound), a site-specific assessment would be required to accurately determine the AC for sulphate at this location.

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

FGuideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

Station: D-1

| Parameter<br>Units               | ACID<br>mg/L | BaCl2(D)<br>kg/day | BaCI2(T)<br>kg/month | ELEV<br>m | FLOW<br>L/s | NaOH(D)<br>kg/day | NaOH(T)<br>kg/month | Odays<br>day | Hardness<br>mg/L | pH<br>pH units       | SO4<br>mg/L      | Ra<br>Bɑ/L                            | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L             | Mn<br>mg/L       | U<br>mg/L |
|----------------------------------|--------------|--------------------|----------------------|-----------|-------------|-------------------|---------------------|--------------|------------------|----------------------|------------------|---------------------------------------|------------------|---------------------|------------------------|------------------|-----------|
| Assessment Criteria <sup>A</sup> |              |                    |                      |           |             | •                 |                     | •            |                  | 5.2/6.5 <sup>8</sup> | 309 <sup>°</sup> | 1.0 <sup>D</sup>                      | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>6</sup> | 0.8 <sup>H</sup> | 0.015     |
| 2017-01                          |              |                    |                      |           |             |                   |                     |              |                  |                      |                  |                                       |                  |                     | 1,                     |                  | 1 010 10  |
| 2017-02                          | -            | 1.1.0.             | 0                    | 386.83    | 0           |                   | 0                   | 0            | II               |                      |                  | · · · · · · · · · · · · · · · · · · · |                  |                     |                        |                  |           |
|                                  |              | 14.21              | 97.02                | 386.88    | 12.75       | 0                 | 0                   | 7            |                  | 7.2                  | 97               | 2.317                                 |                  |                     |                        |                  |           |
| 2017-03                          | <1           |                    | 634.3                | 386.94    | 77.39       |                   | 34.65               | 31           | 195.0            | 7.1                  | 110              | 2.811                                 | 0.119            | < 0.0005            | 0.04                   | 0.016            | 0.031     |
| 2017-04                          | <1           |                    | 468                  | 387.05    | 60.5        |                   | 306.3               | 30           | 32.1             | 6.8                  | 16               | 0.581                                 | 0.027            | <0.0005             | 0.06                   | 0.012            | 0.0043    |
| 2017-05                          |              |                    | 519.06               | 387.08    | 63.82       |                   | 301.56              | 31           |                  | 7.9                  | 87               | 2.299                                 |                  |                     |                        | 010.14           | 10000.00  |
| 2017-06                          |              |                    | 726.9                | 387.02    | 95.67       |                   | 140.7               | 28           |                  | 8.1                  | 91               | 2.156                                 |                  |                     |                        |                  |           |
| 2017-07                          | <1           |                    | 602.97               | 386.94    | 77.1        |                   | 0                   | 21           | 136.0            | 8.1                  | 87               | 1.837                                 | 0.074            | < 0.0005            | 0.02                   | 0.011            | 0.0168    |
| 2017-08                          |              |                    | 0                    | 386.95    | 0           |                   | 0                   | 0            |                  |                      |                  |                                       |                  | 0.0000              |                        | 0.011            | 0.0100    |
| 2017-09                          |              |                    | 0                    | 386.95    | 0           |                   | 0                   | 0            |                  |                      |                  |                                       |                  |                     |                        |                  |           |
| 2017-10                          |              |                    | 235                  | 386.92    | 29.32       |                   | 0                   | 8            | 128.0            | 7.4                  |                  | 1.591                                 | -                |                     |                        |                  |           |
| 2017-11                          |              |                    | 865                  | 387.09    | 109.87      |                   | 0                   | 30           |                  | 7.6                  | 83               | 1.92                                  |                  |                     |                        | _                | <u> </u>  |
| 2017-12                          | <1           |                    | 878.9                | 387.14    | 108.77      |                   | 0                   | 31           | 112.0            | 7.3                  | 65.5             | 1.063                                 | 0.065            | <0.0005             | 0.07                   | 0.011            | 0.0107    |
| Count                            | 4            | 1 1 1              | 12                   | 52        | 365         | 1 1               | 12                  | 12           | 5                | 13                   | 9                | 10                                    |                  |                     |                        |                  | 1.        |
| High                             | <1           | 14.21              | 878.9                | 387.16    | 134         | 0                 | 306.3               | 31           | 195.0            | 8.1                  | 110              | 2.811                                 | 0,119            | <0.0005             | 4                      | 4                | 4         |
| Low                              | <1           | 14.21              | 0                    | 386.57    | 0           | ő                 | 000.0               | 0            | 32.1             | 6.8                  | 16               | 0.581                                 | 0.027            | <0.0005             | 0.07                   | 0.016            | 0.031     |
| Mean                             | <1           | 14.21              | 418.93               | 386.98    | 53.11       | 0                 | 65.27               | 18           | 120.6            | 7.5                  | 78               | 1.764                                 | 0.027            | <0.0005             | 0.02                   | 0.011            | 0.0043    |
| High Limit                       |              | 1 1                |                      |           |             |                   |                     |              |                  | 8.5                  | 309              | 1                                     | 1                | 0.0025              | 0.49                   | 0.0              | 0.045     |
| Lim Ex                           | 0            | 0                  | 0                    | 0         | 0           | 0                 | 0                   | 0            | 0                | 0.0                  | 0                | 8                                     | 0                | 0.0025              | 0.49                   | 0.8              | 0.015     |
| Frequency                        | 0%           | 0%                 | 0%                   | 0%        | 0%          | 0%                | 0%                  | 0%           | 0%               | 0%                   | 0%               | 0.8                                   | 0%               | 0%                  | 0%                     | 0%               | 50%       |
| 10x Lim Ex                       | 0            | 0                  | 0                    | 0         | 0           | 0                 | 0                   | 0            | 0                | 0                    | 0                | 0.0                                   | 0                | 0                   | 0                      | 0                | 0         |
| Frequency                        | 0%           | 0%                 | 0%                   | 0%        | 0%          | 0%                | 0%                  | 0%           | 0%               | 0%                   | 0%               | 0                                     | 0%               | 0%                  | 0%                     | 0%               | 0%        |

\*Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher ( Minnow, 2016)

eThe lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment oriteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

CAmbient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the annual average of hardness at this station for 2017 <sup>D</sup>PWOO for Radium (Minnow, 2016)

<sup>C</sup>Guideline taken from the Water Guality Working Guidelines (BCMOE, 2006)

"Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

60.49 mg/L based on upper limit of background concentrations for lakes: 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

"Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016) Canadian Council of Ministers of the Environment limit (CCME, 2013)

#### Station: D-16

| Parameter                        | FLOW | hard  | Hq                   | SO4              | Ra               | Ba               | Co                  | Fe                     | Mn               | U         |
|----------------------------------|------|-------|----------------------|------------------|------------------|------------------|---------------------|------------------------|------------------|-----------|
| Units                            | L/s  | mg/L  | pH units             | mg/L             | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L      |
| Assessment Criteria <sup>A</sup> | -    | -     | 5.2/6.5 <sup>B</sup> | 429 <sup>C</sup> | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015     |
| 2017-01                          | 1    | 279   | 6.1                  | 240              | 0.015            | 0.021            | 0.0009              | 0.7                    | 0.662            | <0.0005   |
| 2017-04                          | 1.8  | 129   | 6.3                  | 110              | <0.007           | 0.021            | 0.0008              | 0.15                   | 0.002            | <0.0005   |
| 2017-07                          | 0.23 | 220   | 6.3                  | 180              | 0.014            | 0.010            | 0.000               | 3.76                   | 2.9              | <0.0005   |
| 2017-10                          | 0.73 | 197   | 6.5                  | 150              | 0.014            | 0.02             | 0.002               | 9.89                   | 6.3              | < 0.0005  |
| Count                            | 4    | 4     | 4                    | 4                | 4                | 4                | 4                   | 4                      | 4                | 1         |
| High                             | 1.8  | 279   | 6.5                  | 240              | 0.027            | 0.03             | 0.0037              | 9.89                   | <u>4</u><br>6.3  | 4 <0.0005 |
| Low                              | 0.23 | 129   | 6.1                  | 110              | < 0.007          | 0.018            | 0.0008              | 0.15                   | 0.225            | <0.0005   |
| Mean                             | 0.94 | 206.3 | 6.3                  | 170              | 0.016            | 0.022            | 0.0019              | 3.62                   | 2.522            | < 0.0005  |
| High Limit                       |      |       | 8.5                  | 429              | 1                | 1                | 0.0025              | 0.49                   | 0.8              | 0.015     |
| Lim Ex                           | 0    | 0     | 3                    | 0                | 0                | 0                | 1                   | 3                      | 2                | 0.010     |
| Frequency                        | 0%   | 0%    | 75%                  | 0%               | 0%               | 0%               | 25%                 | 75%                    | 50%              | 0%        |
| 10x Lim Ex                       | 0    | 0     | 0                    | 0                | 0                | 0                | 0                   | 1                      | 0                | 0         |
| Frequency                        | 0%   | 0%    | 0%                   | 0%               | 0%               | 0%               | 0%                  | 25%                    | 0%               | 0%        |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the annual average of hardness at this station for 2017

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

#### Station: D-2

| Parameter                        | FLOW  | hard  | рH                   | SO4   | TSS  | TOXCD | TOXDM | TOXRT | Ra               | Ba               | Co                  | Fe                     | Mn               | U      |
|----------------------------------|-------|-------|----------------------|-------|------|-------|-------|-------|------------------|------------------|---------------------|------------------------|------------------|--------|
| Units                            | L/s   | mg/L  | pH units             | mg/L  | mg/L | IC25  | %     | %     | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L   |
| Assessment Criteria <sup>A</sup> |       |       | 5.2/6.5 <sup>8</sup> | - c   | -    |       |       |       | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>6</sup> | 0.8 <sup>H</sup> | 0.015  |
|                                  |       |       |                      |       |      |       |       |       |                  |                  | diodeo              | 0.40/1.00              | 0.0              | 0.013  |
| 2017-01                          | 21    | 376   | 7                    | 320   | 1    |       |       |       | 0.034            | 0.057            | 0.0009              | 0.31                   | 0.214            | 0.055  |
| 2017-02                          | 18.5  | 421   | 6.9                  | 320   | 1    |       |       |       | 0.053            | 0.067            | 0.0003              | 0.44                   | 0.251            | 0.0615 |
| 2017-03                          | 144   | 298   | 7                    | 200   | 1    |       |       |       | 0.218            | 0.409            | 0.0007              | 0.54                   | 0.168            | 0.0414 |
| 2017-04                          | 110.5 | 209   | 7                    | 140   | 2    |       |       |       | 0.155            | 0.261            | 0.0007              | 0.61                   | 0.172            | 0.0239 |
| 2017-05                          | 47    | 356   | 7.4                  | 240   | 1    | 100   | 0     | 0     | 0.142            | 0.161            | 0.0006              | 0.32                   | 0.172            | 0.0239 |
| 2017-06                          | 52    | 297   | 7.6                  | 220   | 1    | 1     |       |       | 0.139            | 0.217            | <0.0005             | 0.15                   | 0.129            | 0.0393 |
| 2017-07                          | 66.25 | 290   | 7.4                  | 200   | 1    |       |       |       | 0.12             | 0.235            | <0.0005             | 0.13                   | 0.123            | 0.0335 |
| 2017-08                          | 18.6  | 281   | 7.4                  | 220   | 1    |       |       |       | 0.082            | 0.147            | <0.0005             | 0.14                   | 0.089            | 0.0335 |
| 2017-09                          | 14.75 | 294   | 7.4                  | 240   | 2    |       |       |       | 0.052            | 0.105            | <0.0005             | 0.2                    | 0.125            | 0.0320 |
| 2017-10                          | 66.6  | 349   | 7.3                  | 270   | 1    | 100   | 0     | 0     | 0.116            | 0.097            | <0.0005             | 0.12                   | 0.109            | 0.0300 |
| 2017-11                          | 81    | 278   | 7.4                  | 210   | 1    | 1,00  |       |       | 0.165            | 0.333            | 0.0006              | 0.12                   | 0.103            | 0.0328 |
| 2017-12                          | 91,5  | 221   | 7.3                  | 190   | 1    |       |       |       | 0.232            | 0.37             | 0.0006              | 0.13                   | 0.175            | 0.0318 |
| Count                            | 52    | 12    | 52                   | 12    | 52   | 2     | 2     | 2     | 52               | 12               | 12                  | 12                     | 12               | 12     |
| High                             | 240   | 421   | 7.6                  | 320   | 2    | 100   | 0     | 0     | 0.306            | 0.409            | 0.0011              | 0.61                   | 0.251            | 0.0615 |
| Low                              | 9     | 209   | 6.8                  | 140   | <1   | 100   | ő     | ŏ     | 0.019            | 0.403            | <0.0005             | 0.12                   | 0.089            | 0.0239 |
| Mean                             | 59.23 | 305.8 | 7.3                  | 230.8 | 1    | 100   | Ő     | Ő     | 0.123            | 0.205            | 0.0006              | 0.12                   | 0.157            | 0.0239 |
| High Limit                       | 1     | 1     | 8.5                  |       | 10   | 1 1   |       |       | 1                | 1                | 0.0025              | 0.49                   | 0.9              | 0.016  |
| Lim Ex                           | 0     | 0     | 0                    | 0     | 0    | 0     | 0     | 0     | 0                | 0                | 0.0025              | 2                      | 8.0<br>0         | 0.015  |
| Frequency                        | 0%    | 0%    | 0%                   | 0%    | 0%   | 0%    | 0%    | 0%    | 0%               | 0%               | 0%                  | 17%                    | 0%               | 100%   |
| 10x Lim Ex                       | 0     | 0     | 0                    | 0     | 0    | 0     | 0     | 0     | 0                | 0                | 0                   | 0                      | 0                | 0      |
| Frequency                        | 0%    | 0%    | 0%                   | 0%    | 0%   | 0%    | 0%    | 0%    | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%     |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016) <sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment, pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and since the annual average for hardness for 2017 exceeds the highest hardness tested (i.e. upper bound), a site-specific assessment would be required to accurately determine the AC for sulphate at this location.

PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>4</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

#### Station: D-22

| Parameter                        | ACID | BaCI2T   | ODays      | Hq                   | SO4  | Ra               | Ba               | Co                  | Fe                     | Mn               | U                  |
|----------------------------------|------|----------|------------|----------------------|------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Units                            | L/s  | kg/month | day        | pH units             | mg/L | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L               |
| Assessment Criteria <sup>A</sup> | •    | -        | <b>a</b> 1 | 5.2/6.5 <sup>B</sup> | -    | 1.0 <sup>C</sup> | 1.0 <sup>D</sup> | 0.0025 <sup>E</sup> | 0.49/1.69 <sup>F</sup> | 0.8 <sup>G</sup> | 0.015 <sup>H</sup> |
| 2017-01                          | <1   | 55.2     | 31         | 6.1                  | 130  | 0.128            | 0.029            | < 0.0005            | 0.53                   | 0.233            | 0.0006             |
| 2017-02                          |      | 49.6     | 28         | 6.6                  | 100  | 0.061            | 0.020            |                     | 0.00                   | 0.200            | 0.0000             |
| 2017-03                          |      | 56.4     | 31         | 6.7                  |      | 0.07             |                  |                     |                        |                  |                    |
| 2017-04                          | <1   | 55.2     | 30         | 6.6                  | 23   | 0.032            | 0.01             | < 0.0005            | 0.08                   | 0.022            | <0.0005            |
| 2017-05                          |      | 58.03    | 31         | 6.9                  |      | 0.118            | 0.01             | -0.0000             | 0.00                   | 0.022            | ~0.0000            |
| 2017-06                          |      | 53.4     | 30         | 6.8                  |      | 0.236            |                  |                     |                        |                  |                    |
| 2017-07                          | <1   | 55.4     | 31         | 6.8                  | 88   | 0.429            | 0.037            | < 0.0005            | 4.29                   | 0.371            | 0.0014             |
| 2017-08                          |      | 53.83    | 31         | 6.9                  |      | 0.472            | 0.007            | .0.0000             | 7.23                   | 0.071            | 0.0014             |
| 2017-09                          |      | 53.57    | 30         | 7.1                  |      | 0.294            |                  |                     |                        |                  |                    |
| 2017-10                          | <1   | 53.4     | 31         | 7                    | 47   | 0.088            | 0.018            | <0.0005             | 0.65                   | 0.118            | <0.0005            |
| 2017-11                          |      | 51.38    | 30         | 6.8                  |      | 0.054            | 0.010            |                     | 0.00                   | 0.110            | 10.0000            |
| 2017-12                          |      | 51.5     | 31         | 6.7                  |      | 0.066            |                  |                     |                        |                  |                    |
| Count                            | 4    | 12       | 12         | 18                   | 4    | 12               | 4                | 4                   | 4                      | 4                | 4                  |
| High                             | <1   | 58.03    | 31         | 7.1                  | 130  | 0.472            | 0.037            | <0.0005             | 4.29                   | 0.371            | 0.0014             |
| Low                              | <1   | 49.6     | 28         | 6.1                  | 23   | 0.032            | 0.01             | < 0.0005            | 0.08                   | 0.022            | < 0.0005           |
| Mean                             | <1   | 53.91    | 30         | 6.7                  | 72   | 0.171            | 0.024            | <0.0005             | 1.39                   | 0.186            | 0.0007             |
| High Limit                       |      |          |            | 8.5                  |      | 1                | 1                | 0.0025              | 0.49                   | 0.8              | 0.015              |
| Lim Ex                           | 0    | 0        | 0          | 1                    | 0    | 0                | 0                | 0.0020              | 3                      | 0                | 0.010              |
| Frequency                        | 0%   | 0%       | 0%         | 6%                   | 0%   | 0%               | 0%               | 0%                  | 75%                    | 0%               | 0%                 |
| 10x Lim Ex                       | 0    | 0        | 0          | 0                    | 0    | 0                | 0                | 0                   | 0                      | 0                | 0/0                |
| Frequency                        | 0%   | 0%       | 0%         | 0%                   | 0%   | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%                 |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>c</sup>PWQO for Radium (Minnow, 2016)

<sup>D</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>E</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>F</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>6</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

<sup>H</sup>Canadian Council of Ministers of the Environment limit (CCME, 2013)

Station: D-25

| Parameter<br>Units               | ACID<br>mg/L | pH<br>pH units       | SO4<br>mg/L | Ra<br>Bq/L       | Fe<br>mg/L             |
|----------------------------------|--------------|----------------------|-------------|------------------|------------------------|
|                                  |              |                      | in gre      | - Pdi F          | ing/E                  |
| Assessment Criteria <sup>A</sup> | -            | 5.2/6.5 <sup>8</sup> | -           | 1.0 <sup>c</sup> | 0.49/1.69 <sup>D</sup> |
| 2047.04                          |              |                      |             |                  |                        |
| 2017-04                          | <1           | 7.3                  | 63          | 0.308            | 0.32                   |
| 2017-10                          | <1           | 7.3                  | 120         | 0.293            | 0.13                   |
| Count                            | 2            | 2                    | 2           | 2                | 2                      |
| High                             | <1           | 7.3                  | 120         | 0.308            | 0.32                   |
| Low                              | <1           | 7.3                  | 63          | 0.293            | 0.13                   |
| Mean                             | <1           | 7.3                  | 91.5        | 0.3              | 0.22                   |
| High Limit                       |              | 8.5                  | 128         | 1                | 0.49                   |
| Lim Ex                           | 0            | 0                    | 0           | 0                | 0                      |
| Frequency                        | 0%           | 0%                   | 0%          | 0%               | 0%                     |
| 10x Lim Ex                       | 0            | 0                    | 0           | 0                | 0                      |
| Frequency                        | 0%           | 0%                   | 0%          | 0%               | 0%                     |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>PWQO for Radium (Minnow, 2016)

<sup>D</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016) Bolded values indicate an Assessment Criteria limit exceedance

#### Station: D-3

| Parameter                        | FLOW  | hard  | pH                   | SO4              | TSS      | Ra               | Ba               | Co       | Fe                     | Mn               | U                  |
|----------------------------------|-------|-------|----------------------|------------------|----------|------------------|------------------|----------|------------------------|------------------|--------------------|
| Units                            | L/s   | mg/L  | pH units             | mg/L             | mg/L     | Bq/L             | mg/L             | mg/L     | mg/L                   | mg/L             | mg/L               |
| Assessment Criteria <sup>A</sup> |       |       | 5.2/6.5 <sup>B</sup> | 309 <sup>C</sup> |          | 1.0 <sup>0</sup> | 1.0 <sup>E</sup> | 0.0025   | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015 <sup>1</sup> |
| 2017-01                          | 3.8   | 181   | 7                    | 130              | 1        | 0.083            | 0.148            | < 0.0005 | <0.02                  | <0.002           | 0.013              |
| 2017-02                          | 4.5   | 163   | 7.1                  | 110              | 1        | 0.078            | 0.144            | <0.0005  | <0.02                  | <0.002           | 0.0079             |
| 2017-03                          | 15    | 135   | 7                    | 100              | 1        | 0.058            | 0.178            | < 0.0005 | 0.05                   | 0.002            | 0.0045             |
| 2017-04                          | 45    | 44.9  | 6.9                  | 26               | 1        | 0.066            | 0.164            | <0.0005  | 0.11                   | 0.000            | 0.0045             |
| 2017-05                          | 9.6   | 123   | 7.1                  | 74               | <u>i</u> | 0.119            | 0.242            | < 0.0005 | 0.04                   | 0.002            | 0.0042             |
| 2017-06                          | 10.5  | 119   | 7.1                  | 65               | 1        | 0.156            | 0.215            | <0.0005  | 0.04                   | 0.007            | 0.0042             |
| 2017-07                          | 8     | 129   | 7                    | 64               | 1        | 0.156            | 0.247            | <0.0005  | 0.09                   | 0.01             | 0.0038             |
| 2017-08                          | 6.4   | 123   | 7.2                  | 59               | 1        | 0.176            | 0.199            | <0.0005  | 0.27                   | 0.031            | 0.0045             |
| 2017-09                          | 1.75  | 107   | 7.3                  | 51               | 1        | 0.154            | 0.22             | < 0.0005 | 0.17                   | 0.028            | 0.0044             |
| 2017-10                          | 29    | 113   | 7.2                  | 60               | 1        | 0.144            | 0.333            | < 0.0005 | 0.1                    | 0.013            | 0.0063             |
| 2017-11                          | 11    | 77.5  | 7.3                  | 44               | 1        | 0.116            | 0.323            | < 0.0005 | 0.25                   | 0.035            | 0.003              |
| 2017-12                          | 46.75 | 49.6  | 7.1                  | 35               | 1        | 0.125            | 0.32             | <0.0005  | 0.31                   | 0.037            | 0.0016             |
| Count                            | 52    | 12    | 52                   | 12               | 52       | 52               | 12               | 12       | 12                     | 12               | 12                 |
| High                             | 149   | 181   | 7.4                  | 130              | 3        | 0.187            | 0.333            | < 0.0005 | 0.31                   | 0.037            | 0.013              |
| Low                              | <1.00 | 44.9  | 6.8                  | 26               | <1       | 0.043            | 0.144            | < 0.0005 | < 0.02                 | < 0.002          | 0.0016             |
| Mean                             | 15.65 | 113.8 | 7.1                  | 68.2             | 1        | 0.12             | 0.228            | <0.0005  | 0.12                   | 0.015            | 0.0048             |
| High Limit                       |       |       | 8.5                  | 309              | 10       | 1                | 1                | 0.0025   | 0.49                   | 0.8              | 0.015              |
| Lim Ex                           | 0     | 0     | 0                    | 0                | 0        | 0                | 0                | 0        | 0                      | 0                | 0                  |
| Frequency                        | 0%    | 0%    | 0%                   | 0%               | 0%       | 0%               | 0%               | 0%       | 0%                     | 0%               | 0%                 |
| 10x Lim Ex                       | 0     | 0     | 0                    | 0                | 0        | 0                | 0                | 0        | 0                      | 0                | 0                  |
| Frequency                        | 0%    | 0%    | 0%                   | 0%               | 0%       | 0%               | 0%               | 0%       | 0%                     | 0%               | 0%                 |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment, pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>c</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the annual average of hardness at this station for 2017

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

FGuideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

#### Station: D-9

| Parameter                        | FLOW  | hard  | pH                   | \$O4 | Ra               | Ba               | Co                  | Fe                     | Mn               | U      |
|----------------------------------|-------|-------|----------------------|------|------------------|------------------|---------------------|------------------------|------------------|--------|
| Units                            | L/s   | mg/L  | pH units             | mg/L | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L   |
| Assessment Criteria <sup>A</sup> | •     | -     | 5.2/6.5 <sup>B</sup> | °.   | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015  |
|                                  | 1 1 2 |       |                      |      |                  |                  |                     |                        |                  |        |
| 2017-01                          | 1.5   | 567   | 6.9                  | 410  | < 0.007          | 0.012            | 0.0031              | 1.55                   | 1.46             | 0.0124 |
| 2017-04                          | 2.5   | 339   | 6.9                  | 240  | < 0.007          | 0.013            | 0.0017              | 0.62                   | 0.794            | 0.0082 |
| 2017-07                          | 2     | 682   | 6.9                  | 550  | < 0.007          | 0.015            | 0.0036              | 1.53                   | 2                | 0.0125 |
| 2017-10                          | 1.92  | 593   | 6.8                  | 500  | <0.007           | 0.017            | 0.0029              | 1.34                   | 1.45             | 0.0113 |
| Count                            | 4     | 4     | 4                    | 4    | 4                | 4                | 4                   | 4                      | 4                | 4      |
| High                             | 2.5   | 682   | 6.9                  | 550  | < 0.007          | 0.017            | 0.0036              | 1.55                   | 2                | 0.0125 |
| Low                              | 1.5   | 339   | 6.8                  | 240  | < 0.007          | 0.012            | 0.0017              | 0.62                   | 0.794            | 0.0082 |
| Mean                             | 1.98  | 545.3 | 6.9                  | 425  | <0.007           | 0.014            | 0.0028              | 1.26                   | 1.426            | 0.0111 |
| High Limit                       |       |       | 8.5                  |      | 1                | 1                | 0.0025              | 0.49                   | 0.8              | 0.015  |
| Lim Ex                           | 0     | 0     | 0                    | 0    | 0                | 0                | 3                   | 4                      | 3                | 0      |
| Frequency                        | 0%    | 0%    | 0%                   | 0%   | 0%               | 0%               | 75%                 | 100%                   | 75%              | 0%     |
| 10x Lim Ex                       | 0     | 0     | 0                    | 0    | 0                | 0                | 0                   | 0                      | 0                | 0      |
| Frequency                        | 0%    | 0%    | 0%                   | 0%   | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%     |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and since the annual average for hardness for 2017 exceeds the highest hardness tested (i.e. upper bound), a site-specific assessment would be required to accurately determine the AC for sulphate at this location.

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

### DENISON MINES Inc. 2017 Performance Monitoring Results Station: DS-1

| Parameter                        | FLOW   | pH                   | Ra               |
|----------------------------------|--------|----------------------|------------------|
| Units                            | L/s    | pH units             | Bq/L             |
|                                  |        |                      |                  |
| Assessment Criteria <sup>A</sup> | -      | 5.2/6.5 <sup>B</sup> | 1.0 <sup>c</sup> |
| 2017-01                          | 17.8   | 6.9                  | 0.014            |
| 2017-02                          | 17.75  | 6.9                  | 0.011            |
| 2017-03                          | 73.25  | 7.1                  |                  |
| 2017-04                          | 119.75 | 7.2                  | 0.036            |
| 2017-05                          | 37.6   | 7.3                  |                  |
| 2017-06                          | 23     | 7.5                  |                  |
| 2017-07                          | 23.5   | 7.8                  | 0.023            |
| 2017-08                          | 11.6   | 7.5                  |                  |
| 2017-09                          | 4.75   | 7.6                  |                  |
| 2017-10                          | 166    | 7.3                  | 0.009            |
| 2017-11                          | 37.75  | 7.4                  |                  |
| 2017-12                          | 121    | 7.3                  |                  |
| Count                            | 52     | 52                   | 4                |
| High                             | 416    | 8                    | 0.036            |
| Low                              | < 0.00 | 6.7                  | 0.009            |
| Mean                             | 54.77  | 7.3                  | 0.02             |
| High Limit                       |        | 8.5                  | 1                |
| Lim Ex                           | 0      | 0                    | 0                |
| Frequency                        | 0%     | 0%                   | 0%               |
| 10x Lim Ex                       | 0      | 0                    | 0                |
| Frequency                        | 0%     | 0%                   | 0%               |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>PWQO for Radium (Minnow, 2016)

2017 Performance Monitoring Results

#### Station: DS-16

| Parameter<br>Units               | FLOW<br>L/s | hard<br>mg/L | pH<br>pH units       | SO4              | Ra<br>Ba/l       | Ba               | Co                  | Fe                     | Mn               | U        |
|----------------------------------|-------------|--------------|----------------------|------------------|------------------|------------------|---------------------|------------------------|------------------|----------|
|                                  | <b>E</b> /5 | mg/L         | pri units            | mg/L             | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L     |
| Assessment Criteria <sup>A</sup> | -           | ÷.           | 5.2/6.5 <sup>B</sup> | 128 <sup>c</sup> | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015    |
| 2017-03                          | 0.2         | 40.0         | 0.7                  | 00               |                  |                  | 1                   |                        |                  |          |
| 2017-05                          | 0.2         | 40.9         | 6.7                  | 29               | <0.007           | 0.012            | <0.0005             | 0.04                   | 0.027            | < 0.0005 |
| 2017-09                          | Ö           |              |                      |                  |                  |                  |                     |                        |                  |          |
| 2017-12                          | 14          | 15.7         | 6.4                  | 9.5              | <0.007           | 0.007            | < 0.0005            | 0.09                   | 0.022            | < 0.0005 |
| Count                            | 1           | 2            | <u> </u>             |                  |                  |                  | r                   |                        |                  | 1 0.0000 |
| High                             | 4           | - Ann        | 4                    | 2                | 2                | 2                | 2                   | 2                      | 2                | 2        |
| Low                              | 14          | 40.9         | 6.7                  | 29               | < 0.007          | 0.012            | < 0.0005            | 0.09                   | 0.027            | < 0.0005 |
| Mean                             | 0           | 15.7         | 6.4                  | 9.5              | < 0.007          | 0.007            | < 0.0005            | 0.04                   | 0.022            | < 0.0005 |
| Weall                            | 3.55        | 28.3         | 6.6                  | 19.3             | <0.007           | 0.009            | < 0.0005            | 0.07                   | 0.025            | < 0.0005 |
| High Limit                       |             |              | 8.5                  | 128              | 1                | 1                | 0.0005              |                        |                  | 1        |
| Lim Ex                           | 0           | 0            | 1                    | 0                | 0                |                  | 0.0025              | 0.49                   | 0.8              | 0.015    |
| Frequency                        | 0%          | 0%           | 50%                  | 0%               | 0%               | 0                | 0                   |                        | 0                | 0        |
| 10x Lim Ex                       | 0           | 0            | 0                    | 0 //0            | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%       |
| Frequency                        | 0%          | 0%           | 0%                   | 0%               | 0%               | 0%               | 0                   | 0                      | 0%               | 0%       |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>c</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the annual average of hardness at this station for 2017

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

2017 Performance Monitoring Results

#### Station: DS-2

| Parameter<br>Units               | ACID<br>mg/L | FLOW<br>L/s          | Freeboard<br>m | pH<br>pH units       | SO4<br>mg/L | Ra<br>Bq/L       | Ba<br>mg/L       | Co<br>mg/L          | Fe<br>mg/L             | Mn<br>mg/L       | U<br>mg/L          |
|----------------------------------|--------------|----------------------|----------------|----------------------|-------------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Assessment Criteria <sup>A</sup> | •            | -                    |                | 5.2/6.5 <sup>B</sup> |             | 1.0 <sup>c</sup> | 1.0 <sup>D</sup> | 0.0025 <sup>E</sup> | 0.49/1.69 <sup>F</sup> | 0.8 <sup>G</sup> | 0.015 <sup>H</sup> |
| 2017-01                          | 234          | 59.87                | 1 1 1 1 0 1    |                      | 670         |                  |                  |                     |                        |                  |                    |
| 2017-02                          | 2.04         | 65.81                | 1.1184         | 2.8                  | 570         | 0.169            | 0.017            | 0.0799              | 44.2                   | 1.86             | 0.0308             |
| 2017-03                          | -            | 92.15                | 1.1394         | 2.8                  |             | 0.17             |                  |                     |                        |                  |                    |
| 2017-04                          | 96           | 122.87               | 1.2473         | 2.9                  | 000         | 0.1              |                  |                     |                        |                  |                    |
| 2017-05                          |              | 84.13                | 2.0325         | 2.7                  | 200         | 0.136            | 0.019            | 0.0411              | 22.3                   | 0.444            | 0.0227             |
| 2017-06                          |              |                      | 1.6925         | 2.7                  |             | 0.172            |                  |                     |                        |                  |                    |
| 2017-07                          | 248          | <u>59.1</u><br>33.87 | 1.6044         | 2.5                  |             | 0.205            |                  |                     |                        |                  |                    |
| 2017-08                          | 240          |                      | 1.8378         | 2.6                  | 740         | 0.237            | 0.018            | 0.0899              | 27.7                   | 1.77             | 0.0355             |
| 2017-09                          |              | 47.61                | 1.6862         | 2.7                  |             | 0.237            |                  |                     |                        |                  |                    |
| 2017-10                          | 196          | 30.07                | 1.6262         | 2.5                  |             | 0.232            |                  |                     |                        |                  |                    |
| 2017-11                          | 190          | 112.45               | 1.6843         | 2.9                  | 500         | 0.199            | 0.019            | 0.062               | 21                     | 1.32             | 0.0192             |
| 2017-12                          | _            | 106.83               | 1.3139         | 3                    |             | 0.166            |                  |                     |                        |                  |                    |
| 2017-12                          |              | 96.71                | 1.187          | 3.1                  |             | 0.16             |                  |                     |                        |                  |                    |
| Count                            | 4            | 364                  | 293            | 45                   |             | 10               |                  |                     |                        |                  |                    |
| High                             | 248          | 230                  | 2.93           | 15                   | 4           | 12               | 4                | 4                   | 4                      | 4                | 4                  |
| Low                              | 96           | 230                  |                | 3.1                  | 740         | 0.237            | 0.019            | 0.0899              | 44.2                   | 1.86             | 0.0355             |
| Mean                             | 194          |                      | 0.62           | 2.5                  | 200         | 0.1              | 0.017            | 0.0411              | 21                     | 0.444            | 0.0192             |
| mean                             | 194          | 75.87                | 1.4636         | 2.8                  | 502.5       | 0.182            | 0.018            | 0.0682              | 28.8                   | 1.349            | 0.027              |
| High Limit                       | 1            | 1                    |                | 8.5                  |             |                  | 4                | 0.0005              | 0.10                   |                  |                    |
| Lim Ex                           | 0            | 0                    | 0              | 13                   | 0           | 0                | 0                | 0.0025              | 0.49                   | 0.8              | 0.015              |
| Frequency                        | 0%           | 0%                   | 0%             | 100%                 |             |                  |                  | 4                   | 4                      | 3                | 4                  |
| 10x Lim Ex                       | 0            | 0                    | 0 %            | 00%                  | 0%          | 0%               | 0%               | 100%                | 100%                   | 75%              | 100%               |
| Frequency                        | 0%           | 0%                   | 0%             |                      | 0           | 0                | 0                | 4                   | 4                      | 0                | 0                  |
| Criteria are benchmarks based o  |              |                      |                | 0%                   | 0%          | 0%               | 0%               | 100%                | 100%                   | 0%               | 0%                 |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>PWQO for Radium (Minnow, 2016)

<sup>D</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>E</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

F0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>G</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

<sup>H</sup>Canadian Council of Ministers of the Environment limit (CCME, 2013)

Station: DS-3

| Parameter                        | BaCl2T   | CaOT       | Odays | рН <sup>С</sup>      |
|----------------------------------|----------|------------|-------|----------------------|
| Units                            | kg/month | onnes/mont | days  | pH units             |
|                                  |          |            |       | 1                    |
| Assessment Criteria <sup>A</sup> | -        | -          | -     | 5.2/6.5 <sup>B</sup> |
| 2017-01                          | 59.3     | 14.06      | 14    | 10.7                 |
| 2017-02                          | 55.4     | 15.1       | 14    | 10.6                 |
| 2017-03                          | 103.6    | 23.77      | 20    | 10.7                 |
| 2017-04                          | 177.06   | 22.36      | 26    | 10.7                 |
| 2017-05                          | 97.82    | 20         | 16    | 10.7                 |
| 2017-06                          | 57.4     | 14.6       | 12    | 10.5                 |
| 2017-07                          | 53.5     | 78.96      | 8     | 10.5                 |
| 2017-08                          | 71.7     | 11.9       | 12    | 10.6                 |
| 2017-09                          | 41.08    | 6.05       | 8     | 10.8                 |
| 2017-10                          | 249.8    | 30.5       | 26    | 10.9                 |
| 2017-11                          | 168      | 18.35      | 24    | 10.8                 |
| 2017-12                          | 122.1    | 16.3       | 21    | 10.8                 |
| Count                            | 12       | 12         | 12    | 271                  |
| High                             | 249.8    | 78.96      | 26    | 11.2                 |
| Low                              | 41.08    | 6.05       | 8     | 10.3                 |
| Mean                             | 104.73   | 22.66      | 17    | 10.7                 |
| High Limit                       |          |            |       | 8.5                  |
| Lim Ex                           | 0        | 0          | 0     | 170                  |
| Frequency                        | 0%       | 0%         | 0%    | 100%                 |
| 10x Lim Ex                       | 0        | 0          | 0     | 0                    |
| Frequency                        | 0%       | 0%         | 0%    | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>c</sup>pH values exceed High Limit criteria

#### Station: DS-4

| Parameter                        | FLOW  | hard  | pH                   | SO4   | TSS  | TOXCD                                 | TOXDM                                 | TOXRT | Ra               | Ba               | Co                  | Fe                     | Mn               | U      |
|----------------------------------|-------|-------|----------------------|-------|------|---------------------------------------|---------------------------------------|-------|------------------|------------------|---------------------|------------------------|------------------|--------|
| Units                            | L/s   | mg/L  | pH units             | mg/L  | mg/L | IC25                                  | %                                     | %     | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L   |
| Assessment Criteria <sup>A</sup> | -     |       | 5.2/6.5 <sup>B</sup> | - ¢   |      | •                                     |                                       | -     | 1.0 <sup>0</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015  |
|                                  |       |       |                      |       |      |                                       | · · · · · · · · · · · · · · · · · · · |       |                  |                  |                     | 1                      |                  |        |
| 2017-01                          | 24.8  | 326   | 7.1                  | 280   | 1    | · · · · · · · · · · · · · · · · · · · |                                       |       | 0.059            | 0.026            | < 0.0005            | 0.14                   | 0.027            | 0.0097 |
| 2017-02                          | 25.5  | 388   | 7.1                  | 330   | 1    |                                       |                                       |       | 0.049            | 0.027            | < 0.0005            | 0.17                   | 0.041            | 0.0064 |
| 2017-03                          | 69.25 | 365   | 7.1                  | 310   | 1    |                                       |                                       |       | 0.032            | 0.038            | 0.001               | 0.25                   | 0.076            | 0.003  |
| 2017-04                          | 205   | 186   | 7                    | 160   | 1    |                                       |                                       |       | 0.039            | 0.057            | 0.0008              | 0.22                   | 0.04             | 0.001  |
| 2017-05                          | 46.4  | 319   | 7.2                  | 250   | 1    | 100                                   | 0                                     | 0     | 0.061            | 0.057            | < 0.0005            | 0.14                   | 0.031            | 0.0033 |
| 2017-06                          | 28    | 335   | 7.1                  | 270   | 2    |                                       |                                       |       | 0.085            | 0.051            | <0.0005             | 0.08                   | 0.04             | 0.0026 |
| 2017-07                          | 19.25 | 373   | 7.1                  | 290   | 1    |                                       |                                       |       | 0.084            | 0.047            | < 0.0005            | 0.08                   | 0.067            | 0.0025 |
| 2017-08                          | 18.2  | 346   | 7.2                  | 300   | 1    |                                       |                                       |       | 0.104            | 0.035            | <0.0005             | 0.1                    | 0.052            | 0.0038 |
| 2017-09                          | 7.5   | 343   | 7.3                  | 300   | 11   |                                       |                                       |       | 0.107            | 0.03             | <0.0005             | 0.07                   | 0.035            | 0.0063 |
| 2017-10                          | 137   | 378   | 7.2                  | 300   | 1    | 55                                    | 0                                     | 0     | 0.121            | 0.023            | <0.0005             | 0.17                   | 0.032            | 0.0071 |
| 2017-11                          | 46    | 354   | 7.3                  | 290   | 1    |                                       |                                       |       | 0.057            | 0.055            | 0.0006              | 0.18                   | 0.039            | 0.0035 |
| 2017-12                          | 100   | 268   | 7,1                  | 250   | 1    |                                       |                                       |       | 0.039            | 0.09             | 0.0008              | 0.41                   | 0.043            | 0.0017 |
| Count                            | 52    | 12    | 52                   | 12    | 52   | 2                                     | 2                                     | 2     | 52               | 12               | 12                  | 12                     | 12               | 12     |
| High                             | 400   | 388   | 7.5                  | 330   | 2    | 100                                   | 0                                     | 0     | 0.193            | 0.09             | 0.001               | 0.41                   | 0.076            | 0.0097 |
| Low                              | 0     | 186   | 6.9                  | 160   | <1   | 55                                    | 0                                     | 0     | 0.029            | 0.023            | < 0.0005            | 0.07                   | 0.027            | 0.001  |
| Mean                             | 60.27 | 331.8 | 7.2                  | 277.5 | 1    | 77                                    | 0                                     | 0     | 0.071            | 0.045            | 0.0006              | 0.17                   | 0.044            | 0.0042 |
| High Limit                       | 1     |       | 8.5                  |       | 10   | 1                                     |                                       |       | 1                | 1                | 0.0025              | 0.49                   | 0.8              | 0.015  |
| Lim Ex                           | 0     | 0     | 0                    | 0     | 0    | 0                                     | 0                                     | 0     | 0                | 0                | 0                   | 0.43                   | 0.5              | 0.015  |
| Frequency                        | 0%    | 0%    | 0%                   | 0%    | 0%   | 0%                                    | 0%                                    | 0%    | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%     |
| 10x Lim Ex                       | 0     | 0     | 0                    | 0     | 0    | 0                                     | 0                                     | 0     | 0                | 0                | 0                   | 0                      | 0                | 0      |
| Frequency                        | 0%    | 0%    | 0%                   | 0%    | 0%   | 0%                                    | 0%                                    | 0%    | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%     |

<sup>A</sup>Criteria are benchmarks based on the most recent federal. Ontario, or BCMOE guideline for the protection of aguatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016) <sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH

6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and since the annual average for hardness for 2017 exceeds the highest hardness tested (i.e. upper bound), a site-specific assessment would be required to accurately determine the AC for sulphate at this location.

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

<sup>1</sup>Canadian Council of Ministers of the Environment limit (CCME, 2013)

÷

Station: DS-5

| Parameter                        | CONDF          | FLOW  | Head      | pН                   |
|----------------------------------|----------------|-------|-----------|----------------------|
| Units                            | <u>µmho/cm</u> | L/s   | <u>ft</u> | pH units             |
| Assessment Criteria <sup>A</sup> | -              | -     | -         | 5.2/6.5 <sup>B</sup> |
| 2017-01                          | 134            | 1     |           | 3.5                  |
| 2017-04                          | 92             | 10.42 | 0.3       | 3.8                  |
| 2017-07                          | 244.8          | 0.22  | 0         | 3.8                  |
| 2017-10                          | 175            | 0.89  | 0.1       | 3.9                  |
| Count                            | 4              | 4     | 3         | 4                    |
| High                             | 244.8          | 10.42 | 0.3       | 3.9                  |
| Low                              | 92             | 0.22  | 0         | 3.5                  |
| Mean                             | 161.4          | 3.13  | 0.1       | 3.8                  |
| High Limit                       | 69.5           |       |           | 8.5                  |
| Lim Ex                           | 4              | 0     | 0         | 4                    |
| Frequency                        | 100%           | 0%    | 0%        | 100%                 |
| 10x Lim Ex                       | 0              | 0     | 0         | 0                    |
| Frequency                        | 0%             | 0%    | 0%        | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

2017 Performance Monitoring Results

### Station: DS-6

| Parameter                        | FLOW  | pН                   |
|----------------------------------|-------|----------------------|
| Units                            | L/s   | pH units             |
|                                  |       |                      |
| Assessment Criteria <sup>A</sup> | -     | 5.2/6.5 <sup>B</sup> |
| 2017-01                          | 19.75 | 7.1                  |
| 2017-02                          | 5     | 6.9                  |
| 2017-03                          | 93.25 | 7.2                  |
| 2017-04                          | 163   | 7.5                  |
| 2017-05                          | 47    | 7.5                  |
| 2017-06                          | 22.25 | 8.1                  |
| 2017-07                          | 15.5  | 8.4                  |
| 2017-08                          | 12.2  | 7.7                  |
| 2017-09                          | 0     |                      |
| 2017-10                          | 130.8 | 7.8                  |
| 2017-11                          | 44.5  | 7.4                  |
| 2017-12                          | 63.5  | 7.1                  |
|                                  |       |                      |
| Count                            | 51    | 51                   |
| High                             | 356   | 8.4                  |
| Low                              | 0     | 6.8                  |
| Mean                             | 52.1  | 7.5                  |
| High Limit                       |       | 8.5                  |
| Lim Ex                           | 0     | 0                    |
| Frequency                        | 0%    | 0%                   |
| 10x Lim Ex                       | 0     | 0                    |
| Frequency                        | 0%    | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>8</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

#### Station: FBDST

| Parameter                        | pН                   | Hard  | SO4              | TSS  | Ra               | Ba               | Co                  | Fe                     | Mn               | U        |
|----------------------------------|----------------------|-------|------------------|------|------------------|------------------|---------------------|------------------------|------------------|----------|
| Units                            | pH units             | mg/L  | mg/L             | mg/L | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L     |
| Assessment Criteria <sup>A</sup> | 5.2/6.5 <sup>B</sup> | •     | 128 <sup>¢</sup> | -    | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015    |
| 2017-01                          |                      | -0.5  |                  |      |                  | 1                |                     |                        |                  | ·        |
| 2017-02                          | 6.9                  | <0.5  | <0.1             | <1   | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-02                          | 6.2                  | < 0.5 | <0.1             | <1   | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
|                                  |                      | < 0.5 | <0.1             | <1   | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-04                          | 6.3                  | < 0.5 | < 0.1            | <1   | < 0.007          | < 0.005          | <0.0005             | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-05                          | 6.4                  | <0.5  | <0.1             | <1   | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-06                          | 6.1                  | < 0.5 | 0.2              | <1   | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-07                          | 6.3                  | <0.5  | <0.1             | <1   | 0.009            | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-08                          | 6.5                  | <0.5  | <0.1             | <1   | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-09                          | 6.5                  | <0.5  | <0.1             | 1    | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-10                          | 6                    | < 0.5 | 0.7              | <1   | < 0.007          | < 0.005          | < 0.0005            | 0.04                   | 0.002            | < 0.0005 |
| 2017-11                          | 6.5                  | <0.5  | <0.1             | <1   | < 0.007          | < 0.005          | < 0.0005            | < 0.02                 | < 0.002          | < 0.0005 |
| 2017-12                          | 6.5                  | <0.5  | <0.1             | <1   | <0.007           | < 0.005          | < 0.0005            | <0.02                  | < 0.002          | < 0.0005 |
| Count                            | 12                   | 12    | 12               | 12   | 12               | 12               | 12                  | 12                     | 12               | 12       |
| High                             | 7                    | < 0.5 | 0.7              | 1    | 0.009            | < 0.005          | < 0.0005            | 0.04                   | 0.002            | <0.0005  |
| Low                              | 6                    | < 0.5 | <0.1             | <1   | < 0.007          | <0.005           | <0.0005             | <0.02                  | < 0.002          | <0.0005  |
| Mean                             | 6.4                  | <0.5  | 0.2              | 1    | 0.007            | < 0.005          | < 0.0005            | 0.02                   | 0.002            | < 0.0005 |
| High Limit                       | 8.5                  |       | 128              | 10   | 1                | 1                | 0.0025              | 0.49                   | 0.8              | 0.015    |
| Lim Ex                           | 6                    | 0     | 0                | 0    | 0                | 0                | 0.0023              | 0.49                   | 0.0              | 0.015    |
| Frequency                        | 50%                  | 0%    | 0%               | 0%   | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%       |
| 10x Lim Ex                       | 0                    | 0     | 0                | 0    | 0                | 0                | 0                   | 0                      | 0                | 0        |
| Frequency                        | 0%                   | 0%    | 0%               | 0%   | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%       |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>e</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the annual average of hardness at this station for 2017

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

"Guideline taken from the Water Quality Working Guidelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at

Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

Station: DS-11

| Parameter                        | CONDF   | FLOW | pН                   |
|----------------------------------|---------|------|----------------------|
| Units                            | µmho/cm | L/s  | pH units             |
|                                  |         |      |                      |
| Assessment Criteria <sup>A</sup> | -       | -    | 5.2/6.5 <sup>B</sup> |
|                                  |         |      |                      |
| 2017-01                          | 356     | 0.32 | 6.4                  |
| 2017-04                          | 381.9   | 0.8  | 4.3                  |
| 2017-07                          | 464     | 0.45 | 3.9                  |
| 2017-10                          | 326     | 0.92 | 6.7                  |
| Count                            | 4       | 4    | 4                    |
| High                             | 464     | 0.92 | 6.7                  |
| Low                              | 326     | 0.32 | 3.9                  |
| Mean                             | 382     | 0.62 | 5.3                  |
| flight finite                    | 005     |      |                      |
| High Limit                       | 69.5    |      | 8.5                  |
| Lim Ex                           | 4       | 0    | 3                    |
| Frequency                        | 100%    | 0%   | 75%                  |
| 10x Lim Ex                       | 0       | 0    | 0                    |
| Frequency                        | 0%      | 0%   | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

Station: DS-12

| Parameter                        | CONDF            | FLOW | pH                   |  |
|----------------------------------|------------------|------|----------------------|--|
| Units                            | µ <b>mho</b> /cm | L/s  | pH units             |  |
|                                  |                  |      |                      |  |
| Assessment Criteria <sup>A</sup> | -                |      | 5.2/6.5 <sup>B</sup> |  |
|                                  |                  |      |                      |  |
| 2017-01                          | 442              | 0.6  | 4.9                  |  |
| 2017-04                          | 495.5            | 0.5  | 3.7                  |  |
| 2017-07                          | 512              | 0.01 | 4.3                  |  |
| 2017-10                          | 449              | 1.54 | 4.1                  |  |
|                                  |                  |      |                      |  |
| Count                            | 4                | 4    | 4                    |  |
| High                             | 512              | 1.54 | 4.9                  |  |
| Low                              | 442              | 0.01 | 3.7                  |  |
| Mean                             | 474.6            | 0.66 | 4.3                  |  |
| High Limit                       | 69.5             |      | 8.5                  |  |
| Lim Ex                           | 4                | 0    | 4                    |  |
| Frequency                        | 100%             | 0%   | 100%                 |  |
| 10x Lim Ex                       | 0                | 0    | 0                    |  |
| Frequency                        | 0%               | 0%   | 0%                   |  |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

2017 Performance Monitoring Results

### Station: DS-13

| Parameter                        | CONDF   | FLOW | pН                   |
|----------------------------------|---------|------|----------------------|
| Units                            | µmho/cm | L/s  | pH units             |
|                                  |         |      |                      |
| Assessment Criteria <sup>A</sup> | -       | -    | 5.2/6.5 <sup>B</sup> |
|                                  |         |      |                      |
| 2017-01                          | 514     | 0    | 6.4                  |
| 2017-04                          | 509     | 0.09 | 6.7                  |
| 2017-07                          | 663     | 0.09 | 6.7                  |
| 2017-10                          | 610     | 0.13 | 6.7                  |
|                                  |         |      | -                    |
| Count                            | 4       | 4    | 4                    |
| High                             | 663     | 0.13 | 6.7                  |
| Low                              | 509     | 0.09 | 6.4                  |
| Mean                             | 574     | 0.1  | 6.6                  |
| High Limit                       | 69.5    |      | 8.5                  |
| Lim Ex                           | 4       | 0    | 1                    |
| Frequency                        | 100%    | 0%   | 25%                  |
| 10x Lim Ex                       | 0       | 0    | 0                    |
| Frequency                        | 0%      | 0%   | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

2017 Performance Monitoring Results

Station: DS-14

| Parameter                        | CONDF   | FLOW | pН                   |
|----------------------------------|---------|------|----------------------|
| Units                            | µmho/cm | L/s  | pH units             |
|                                  |         |      |                      |
| Assessment Criteria <sup>A</sup> | -       | -    | 5.2/6.5 <sup>B</sup> |
|                                  |         |      |                      |
| 2017-01                          |         | 0    |                      |
| 2017-04                          |         | 0    |                      |
| 2017-07                          |         | 0    |                      |
| 2017-10                          |         |      |                      |
| Count                            | 4       | 4    | 4                    |
| High                             |         | 0    |                      |
| Low                              |         | 0    |                      |
| Mean                             |         | 0    |                      |
| High Limit                       | 69.5    |      | 8.5                  |
| Lim Ex                           | 0       | 0    | 0                    |
| Frequency                        | 0%      | 0%   | 0%                   |
| 10x Lim Ex                       | 0       | 0    | 0                    |
| Frequency                        | 0%      | 0%   | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

Bolded values indicate an Assessment Criteria limit exceedance

24

2017 Performance Monitoring Results

Station: ST-1

| Parameter                        | CONDF   | pН                   |
|----------------------------------|---------|----------------------|
| Units                            | µmho/cm | pH units             |
|                                  |         |                      |
| Assessment Criteria <sup>A</sup> | -       | 5.2/6.5 <sup>B</sup> |
|                                  |         |                      |
| 2017-01                          | 99      | 3.9                  |
| 2017-04                          | 82.8    | 4.1                  |
| 2017-07                          | 111     | 5                    |
| 2017-10                          | 69.4    | 5.8                  |
| Count                            | 4       | 4                    |
| High                             | 111     | 5.8                  |
| Low                              | 69.4    | 3.9                  |
| Mean                             | 90.6    | 4.7                  |
| High Limit                       | 69,5    | 8.5                  |
| Lim Ex                           | 3       | 4                    |
| Frequency                        | 75%     | 100%                 |
| 10x Lim Ex                       | 0       | 0                    |
| Frequency                        | 0%      | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

#### Station: ST-1A

| Parameter                        | CONDF   | FLOW | рН                   |
|----------------------------------|---------|------|----------------------|
| Units                            | µmho/cm | L/s  | pH units             |
|                                  | V/      |      |                      |
| Assessment Criteria <sup>A</sup> |         | -    | 5.2/6.5 <sup>B</sup> |
| 2017-01                          |         |      | 1                    |
| 2017-04                          | 49      | 0.04 | 4.7                  |
| 2017-07                          |         | 0    |                      |
| 2017-10                          |         | 0    |                      |
| Count                            | 4       | 4    | 4                    |
| High                             | 49      | 0.04 | 4.7                  |
| Low                              | 49      | 0    | 4.7                  |
| Mean                             | 49      | 0.01 | 4.7                  |
| High Limit                       | 69.5    |      | 8.5                  |
| Lim Ex                           | 0       | 0    | 1                    |
| Frequency                        | 0%      | 0%   | 100%                 |
| 10x Lim Ex                       | 0       | 0    | 0                    |
| Frequency                        | 0%      | 0%   | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

Station: ST-3

| Parameter                        | CONDF   | pН                   |
|----------------------------------|---------|----------------------|
| Units                            | µmho/cm | pH units             |
|                                  |         |                      |
| Assessment Criteria <sup>A</sup> | -       | 5.2/6.5 <sup>B</sup> |
|                                  |         |                      |
| 2017-01                          | 610     | 3.1                  |
| 2017-04                          | 512     | 3.4                  |
| 2017-07                          | 718     | 3                    |
| 2017-10                          | 728     | 3.3                  |
|                                  |         |                      |
| Count                            | 4       | 4                    |
| High                             | 728     | 3.4                  |
| Low                              | 512     | 3                    |
| Mean                             | 642     | 3.2                  |
|                                  |         |                      |
| High Limit                       | 69.5    | 8.5                  |
| Lim Ex                           | 4       | 4                    |
| Frequency                        | 100%    | 100%                 |
| 10x Lim Ex                       | 2       | 0                    |
| Frequency                        | 50%     | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

#### Station: ST-3A

| Parameter                        | CONDF   | FLOW | pН                   |
|----------------------------------|---------|------|----------------------|
| Units                            | µmho/cm | L/s  | pH units             |
|                                  |         |      |                      |
| Assessment Criteria <sup>A</sup> | -       | -    | 5.2/6.5 <sup>B</sup> |
|                                  |         |      |                      |
| 2017-01                          | 893     | 0.05 | 4.9                  |
| 2017-04                          | 957     | 0.18 | 4.1                  |
| 2017-07                          | 1085    | 0.14 | 4.2                  |
| 2017-10                          | 1007    | 0.15 | 5.1                  |
|                                  |         |      |                      |
| Count                            | 4       | 4    | 4                    |
| High                             | 1085    | 0.18 | 5.1                  |
| Low                              | 893     | 0.05 | 4.1                  |
| Mean                             | 985.5   | 0.13 | 4.6                  |
|                                  | -       |      |                      |
| High Limit                       | 69.5    |      | 8.5                  |
| Lim Ex                           | 4       | 0    | 4                    |
| Frequency                        | 100%    | 0%   | 100%                 |
| 10x Lim Ex                       | 4       | 0    | 0                    |
| Frequency                        | 100%    | 0%   | 0%                   |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guideline for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

2017 Performance Monitoring Results

#### Station: ST-4

| Parameter                        | ACID | ALK  | CONDF   | hard | pH                   | SO4              | Ra               | Ba               | Co                  | Fe                     | Mn               | U                  |
|----------------------------------|------|------|---------|------|----------------------|------------------|------------------|------------------|---------------------|------------------------|------------------|--------------------|
| Units                            | mg/L | mg/L | µmho/cm | mg/L | mg/L                 | mg/L             | Bq/L             | mg/L             | mg/L                | mg/L                   | mg/L             | mg/L               |
|                                  |      |      |         | 10.0 | - atta - B           | <b>Г</b>         | D.               |                  |                     |                        |                  |                    |
| Assessment Criteria <sup>A</sup> | -    |      |         |      | 5.2/6.5 <sup>B</sup> | 128 <sup>C</sup> | 1.0 <sup>D</sup> | 1.0 <sup>E</sup> | 0.0025 <sup>F</sup> | 0.49/1.69 <sup>G</sup> | 0.8 <sup>H</sup> | 0.015 <sup>1</sup> |
| 2017-02                          | <1   | 6    | 86.5    | 43.6 | e e                  | 20               | 0.04             | 0.000            |                     | L 0.11                 |                  |                    |
|                                  |      |      |         |      | 6.5                  | 32               | 0.04             | 0.039            | <0.0005             | 0.11                   | 0.024            | 0.0015             |
| 2017-05                          | <1   | 1    | 83.6    | 44.3 | 6.9                  | 31               | 0.021            | 0.036            | < 0.0005            | <0.02                  | 0.005            | 0.0012             |
| 2017-08                          | <1   | 6    | 102.6   | 34.9 | 7.2                  | 30               | 0.029            | 0.035            | < 0.0005            | 0.02                   | 0.004            | 0.0015             |
| 2017-11                          | <1   | 7    | 86.6    | 41.2 | 6.7                  | 30               | 0.017            | 0.037            | <0.0005             | <0.02                  | 0.005            | 0.0011             |
| -                                |      |      |         |      |                      |                  |                  |                  |                     |                        |                  |                    |
| Count                            | 4    | 4    | 4       | 4    | 4                    | 4                | 4                | 4                | 4                   | 4                      | 4                | 4                  |
| High                             | <1   | 7    | 102.6   | 44.3 | 7.2                  | 32               | 0.04             | 0.039            | <0.0005             | 0.11                   | 0.024            | 0.0015             |
| Low                              | <1   | 6    | 83.6    | 34.9 | 6.5                  | 30               | 0.017            | 0.035            | < 0.0005            | <0.02                  | 0.004            | 0.0011             |
| Mean                             | <1   | 6.5  | 89.8    | 41   | 6.8                  | 30.8             | 0.027            | 0.037            | <0.0005             | 0.04                   | 0.009            | 0.0013             |
|                                  |      |      |         |      |                      |                  |                  |                  |                     |                        |                  |                    |
| High Limit                       |      |      | 69.5    |      | 8.5                  | 128              | 1                | 1                | 0.0025              | 0.49                   | 0.8              | 0.015              |
| Lim Ex                           | 0    | 0    | 4       | 0    | 0                    | 0                | 0                | 0                | 0                   | 0                      | 0                | 0                  |
| Frequency                        | 0%   | 0%   | 100%    | 0%   | 0%                   | 0%               | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%                 |
| 10x Lim Ex                       | 0    | 0    | 0       | 0    | 0                    | 0                | 0                | 0                | 0                   | 0                      | 0                | 0                  |
| Frequency                        | 0%   | 0%   | 0%      | 0%   | 0%                   | 0%               | 0%               | 0%               | 0%                  | 0%                     | 0%               | 0%                 |

<sup>A</sup>Criteria are benchmarks based on the most recent federal, Ontario, or BCMOE guidelines for the protection of aquatic life or the upper limit of background concentrations (between 2003-2013), whichever is higher (Minnow, 2016)

<sup>B</sup>The lower limit of pH is used as the benchmark to identify potential mine-related reductions in pH in the receiving environment. pH 5.2 is the receiving environment criteria used for wetland/stream locations; pH 6.5 is criteria used for lake locations (Minnow, 2016)

<sup>C</sup>Ambient Water Quality Guidelines (BCMOE, 2013). The guideline is hardness dependent and the value calculated for this station is based on the annual average hardness at this station in 2017.

<sup>D</sup>PWQO for Radium (Minnow, 2016)

<sup>E</sup>Guideline taken from the Water Quality Working Guidelines (BCMOE, 2006)

<sup>F</sup>Guideline taken from Environment Canada's Federal Water Quality Guidelines (Environment Canada, 2013)

<sup>6</sup>0.49 mg/L based on upper limit of background concentrations for lakes; 1.69 mg/L is upper limit of background concentration for wetlands (Minnow, 2016)

<sup>H</sup>Guideline taken from the Water Quality Working Guldelines, and is hardness dependent. The value calculated for the SRWMP is based on the average hardness at Station D-6, which is the only mine-exposed station where manganese is monitored (Minnow, 2016)

Canadian Council of Ministers of the Environment limit (CCME, 2013)

| BH91 D1A | 218.00 ft                     |             |                    |                   |                |
|----------|-------------------------------|-------------|--------------------|-------------------|----------------|
| Year     | Elevation <sup>1</sup><br>(m) | Field<br>pH | Sulphate<br>(mg/L) | Acidity<br>(mg/L) | lron<br>(mg/L) |
| 2013     | 9065.10                       | 7.3         | 830.0              | <1                | 37.90          |
| 2014     | 9060.10                       | 7.2         | 870.0              | <1                | 38.80          |
| 2015     | 359.73                        | 7.1         | 980.0              | <1                | 33.30          |
| 2016     | 360.60                        | 6.8         | 790.0              | <1                | 32.00          |
| 2017     | 363.16                        | 7.3         | 830.0              | <1                | 33.60          |

### BH91 D1B 149.20 ft

| Year | Elevation <sup>1</sup><br>(m) | Field<br>pH | Sulphate<br>(mg/L) | Acidity<br>(mg/L) | lron<br>(mg/L) |
|------|-------------------------------|-------------|--------------------|-------------------|----------------|
| 2013 | 9068.82                       | 8.1         | 580.0              | <1                | 0.05           |
| 2014 | 9061.52                       | 8.1         | 570.0              | <1                | <0.02          |
| 2015 | 360.16                        | 7.7         | 690.0              | 2                 | 0.10           |
| 2016 | 360.75                        | 7.6         | 570.0              | <1                | 0.02           |
| 2017 | 363.67                        | 7.3         | 620.0              | <1                | 1.73           |

| BH91 D3A | 159.00 ft              |       |          |         |        |
|----------|------------------------|-------|----------|---------|--------|
| Year     | Elevation <sup>1</sup> | Field | Sulphate | Acidity | Iron   |
|          | (m)                    | рН    | (mg/L)   | (mg/L)  | (mg/L) |
| 2013     | 9059.95                | 7.0   | 1800.0   | 312     | 301.00 |
| 2014     | 9054.71                | 7.1   | 1800.0   | 266     | 258.00 |
| 2015     | 361.22                 | 6.7   | 1800.0   | 278     | 277.00 |
| 2016     | 361.07                 | 6.5   | 1800.0   | 223     | 190.00 |
| 2017     | 363.62                 | 6.6   | 1600.0   | 176     | 190.00 |

#### **BH91 D3B** 69.00 ft

| Year | Elevation <sup>1</sup> | Field | Sulphate | Acidity | Iron   |
|------|------------------------|-------|----------|---------|--------|
|      | (m)                    | pН    | (mg/L)   | (mg/L)  | (mg/L) |
| 2013 | 9093.37                | 7.1   | 1800.0   | 469     | 344.00 |
| 2014 | 9090.89                | 6.8   | 1800.0   | 405     | 279.00 |
| 2015 | 370.30                 | 6.3   | 1500.0   | 277     | 214.00 |
| 2016 | 370.37                 | 6.3   | 1300.0   | 245     | 125.00 |
| 2017 | 370.99                 | 6.4   | 1400.0   | 215     | 171.00 |

| BH91 D9A | 72.20 ft               |       |          |         |        |
|----------|------------------------|-------|----------|---------|--------|
| Year     | Elevation <sup>1</sup> | Field | Sulphate | Acidity | Iron   |
|          | (m)                    | рН    | (mg/L)   | (mg/L)  | (mg/L) |
| 2013     | 9178.19                | 7.1   | 1700.0   | 258     | 295.00 |
| 2014     | 9177.41                | 7.4   | 1700.0   | 262     | 221.00 |
| 2015     | 395.62                 | 6.3   | 1700.0   | 256     | 204.00 |
| 2016     | 395.64                 | 6.3   | 1800.0   | 224     | 189.00 |
| 2017     | 396.25                 | 6.6   | 1600.0   | 238     | 223.00 |

| BH91 DG4B | 35.80 ft               |       |          |         |        |
|-----------|------------------------|-------|----------|---------|--------|
| Year      | Elevation <sup>1</sup> | Field | Sulphate | Acidity | Iron   |
|           | (m)                    | pН    | (mg/L)   | (mg/L)  | (mg/L) |
| 2013      | 9055.29                | 6.2   | 520.0    | <1      | 3.02   |
| 2014      | 9054.58                | 6.6   | 580.0    | <1      | 2.27   |
| 2015      | 358.02                 | 6.3   | 710.0    | <1      | 10.50  |
| 2016      | 358.49                 | 6.2   | 700.0    | <1      | 10.40  |
| 2017      | 358.40                 | 6.2   | 730.0    | <1      | 21.90  |

| BH91 SG1A | 5.49 m                               |                                                                                                                                                       |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year      | Elevation                            | Field                                                                                                                                                 | Sulphate                                                                                                                                                                                                                  | Acidity                                                                                                                                                                                                                                                                                                          | Iron                                                                                                                                                                                                                                                                                                                                                                                           |
|           | (m)                                  | pН                                                                                                                                                    | (mg/L)                                                                                                                                                                                                                    | (mg/L)                                                                                                                                                                                                                                                                                                           | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                         |
|           | ( )                                  | •                                                                                                                                                     |                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                | , ο ,                                                                                                                                                                                                                                                                                                                                                                                          |
| 2013      | 388.09                               | 4.3                                                                                                                                                   | 5700.0                                                                                                                                                                                                                    | 4150                                                                                                                                                                                                                                                                                                             | 2320.00                                                                                                                                                                                                                                                                                                                                                                                        |
| 2014      | 387.89                               | 4.5                                                                                                                                                   | 4800.0                                                                                                                                                                                                                    | 3400                                                                                                                                                                                                                                                                                                             | 1810.00                                                                                                                                                                                                                                                                                                                                                                                        |
| 2015      | 387.98                               | 4.0                                                                                                                                                   | 6200.0                                                                                                                                                                                                                    | 3660                                                                                                                                                                                                                                                                                                             | 2810.00                                                                                                                                                                                                                                                                                                                                                                                        |
| 2016      | 387.90                               | 4.2                                                                                                                                                   | 4600.0                                                                                                                                                                                                                    | 3360                                                                                                                                                                                                                                                                                                             | 1440.00                                                                                                                                                                                                                                                                                                                                                                                        |
| 2017      | 387.98                               | 4.0                                                                                                                                                   | 3800.0                                                                                                                                                                                                                    | 3110                                                                                                                                                                                                                                                                                                             | 1600.00                                                                                                                                                                                                                                                                                                                                                                                        |
|           | Year<br>2013<br>2014<br>2015<br>2016 | Year         Elevation<br>(m)           2013         388.09           2014         387.89           2015         387.98           2016         387.90 | Year         Elevation<br>(m)         Field<br>pH           2013         388.09         4.3           2014         387.89         4.5           2015         387.98         4.0           2016         387.90         4.2 | Year         Elevation<br>(m)         Field<br>pH         Sulphate<br>(mg/L)           2013         388.09         4.3         5700.0           2014         387.89         4.5         4800.0           2015         387.98         4.0         6200.0           2016         387.90         4.2         4600.0 | Year         Elevation<br>(m)         Field<br>pH         Sulphate<br>(mg/L)         Acidity<br>(mg/L)           2013         388.09         4.3         5700.0         4150           2014         387.89         4.5         4800.0         3400           2015         387.98         4.0         6200.0         3660           2016         387.90         4.2         4600.0         3360 |

| BH91 SG2A | 33.31 m   |       |          |         |         |
|-----------|-----------|-------|----------|---------|---------|
| Year      | Elevation | Field | Sulphate | Acidity | Iron    |
|           | (m)       | pН    | (mg/L)   | (mg/L)  | (mg/L)  |
| 2013      | 401.31    | 6.3   | 4800.0   | 2290    | 1670.00 |
| 2014      | 400.41    | 6.5   | 4600.0   | 2290    | 1400.00 |
| 2015      | 400.78    | 6.5   | 4500.0   | 2200    | 1330.00 |
| 2016      | 400.48    | 6.0   | 4000.0   | 2260    | 1160.00 |
| 2017      | 401.22    | 6.3   | 4400.0   | 2450    | 1450.00 |

**BH91 SG2D** 4.39 m

| Year | Elevation | Field | Sulphate        | Acidity      | lron   |
|------|-----------|-------|-----------------|--------------|--------|
|      | (m)       | рН    | (mg/L)          | (mg/L)       | (mg/L) |
| 2013 | 405.19    | No s  | sample collecte | ed (no recha | rge)   |
| 2014 | 404.32    | No s  | sample collecte | ed (no recha | rge)   |
| 2015 | 404.37    | No s  | sample collecte | ed (no recha | rge)   |
| 2016 | 404.52    | No s  | sample collecte | ed (no recha | rge)   |
| 2017 | 404.39    | No s  | sample collecte | ed (no recha | rge)   |

| BH91 SG3A | 8.78 m    |                                   |                 |             |            |  |
|-----------|-----------|-----------------------------------|-----------------|-------------|------------|--|
| Year      | Elevation | Field                             | Sulphate        | Acidity     | Iron       |  |
|           | (m)       | рН                                | (mg/L)          | (mg/L)      | (mg/L)     |  |
| 2013      | 399.56    | No s                              | sample collecte | d (no recha | rge)       |  |
| 2014      | 399.77    | No s                              | sample collecte | d (no recha | rge)       |  |
| 2015      | 399.52    | No s                              | sample collecte | d (no recha | rge)       |  |
| 2016      | 399.29    | No sample collected (no recharge) |                 |             |            |  |
| 2017      | 399.69    | No sample collected (no recharge) |                 |             |            |  |
| BH91 SG3B | 5.85 m    |                                   |                 |             |            |  |
| Year      | Elevation | Field                             | Sulphate        | Acidity     | Iron       |  |
|           | (m)       | рН                                | (mg/L)          | (mg/L)      | (mg/L)     |  |
| 2013      | 399.10    | No s                              | sample collecte | d (no recha | rge)       |  |
| 2014      | 399.45    | No sample collected (no recharge) |                 |             |            |  |
| 2015      | 399.26    | No sample collected (no recharge) |                 |             |            |  |
| 2016      | 398.81    | No s                              | sample collecte | d (no recha | rae)       |  |
| 2010      | 390.01    |                                   |                 | ``          | <b>J</b> / |  |

|   | BH98 15A | 7.86 m    |       |          |         |        |
|---|----------|-----------|-------|----------|---------|--------|
| Г | Year     | Elevation | Field | Sulphate | Acidity | Iron   |
|   |          | (m)       | рН    | (mg/L)   | (mg/L)  | (mg/L) |
|   | 2013     | 392.24    | 6.1   | 2900.0   | 1300    | 935.00 |
|   | 2014     | 392.24    | 5.9   | 2700.0   | 1240    | 786.00 |
|   | 2015     | 392.24    | 6.4   | 2700.0   | 1200    | 838.00 |
|   | 2016     | 392.24    | 6.0   | 2600.0   | 1130    | 626.00 |
|   | 2017     | 392.21    | 5.4   | 2400.0   | 1040    | 651.00 |

| BH98 16A | 5.49 m    |       |          |         |         |
|----------|-----------|-------|----------|---------|---------|
| Year     | Elevation | Field | Sulphate | Acidity | Iron    |
|          | (m)       | рН    | (mg/L)   | (mg/L)  | (mg/L)  |
| 2013     | 396.58    | 5.9   | 6200.0   | 3980    | 2840.00 |
| 2014     | 396.28    | 5.9   | 3900.0   | 2050    | 1430.00 |
| 2015     | 395.96    | 6.1   | 4800.0   | 3200    | 1680.00 |
| 2016     | 396.15    | 5.7   | 3900.0   | 1880    | 1240.00 |
| 2017     | 396.35    | 5.6   | 4900.0   | 2660    | 2140.00 |

| PN ST3 P3 | 5.94 m    |       |          |         |        |
|-----------|-----------|-------|----------|---------|--------|
| Year      | Elevation | Field | Sulphate | Acidity | Iron   |
|           | (m)       | рН    | (mg/L)   | (mg/L)  | (mg/L) |
| 2013      | 404.57    | 5.3   | 2500.0   | 980     | 543.00 |
| 2014      | 404.20    | 5.7   | 2300.0   | 954     | 427.00 |
| 2015      | 404.37    | 5.9   | 2500.0   | 1030    | 586.00 |
| 2016      | 404.17    | 5.9   | 2100.0   | 1030    | 589.00 |
| 2017      | 404.61    | 5.8   | 2800.0   | 1280    | 771.00 |

#### **PN ST3 P5** 2.64 m

| Year | Elevation | Field | Sulphate        | Acidity     | Iron    |
|------|-----------|-------|-----------------|-------------|---------|
|      | (m)       | рΗ    | (mg/L)          | (mg/L)      | (mg/L)  |
| 2013 | 404.51    | 3.3   | 3000.0          | 1640        | 853.00  |
| 2014 | 404.25    | 3.5   | 3200.0          | 1950        | 1120.00 |
| 2015 | 404.34    | No s  | sample collecte | d (no recha | irge)   |
| 2016 | 404.18    | 3.6   | 2800.0          | 2200        | 1070.00 |
| 2017 | 404.08    | 3.2   | 3000.0          | 1850        | 827.00  |

#### **PN ST3 P6** 11.58 m

| Year | Elevation | Field | Sulphate | Acidity | Iron    |
|------|-----------|-------|----------|---------|---------|
|      | (m)       | pН    | (mg/L)   | (mg/L)  | (mg/L)  |
| 2013 | 404.62    | 5.1   | 4900.0   | 3460    | 2140.00 |
| 2014 | 404.02    | 6.2   | 4300.0   | 3540    | 1640.00 |
| 2015 | 404.29    | 6.3   | 4700.0   | 3560    | 1770.00 |
| 2016 | 404.06    | 6.2   | 5200.0   | 3970    | 2030.00 |
| 2017 | 404.54    | 6.0   | 5400.0   | 4050    | 2370.00 |
|      |           |       |          |         |         |

### **PN ST3 P8** 20.91 m

| Year | Elevation | Field | Sulphate | Acidity | Iron    |
|------|-----------|-------|----------|---------|---------|
|      | (m)       | pН    | (mg/L)   | (mg/L)  | (mg/L)  |
| 2013 | 402.68    | 5.9   | 12000.0  | 9770    | 6130.00 |
| 2014 | 402.00    | 5.6   | 12000.0  | 9560    | 5540.00 |
| 2015 | 402.36    | 4.5   | 12000.0  | 10100   | 7020.00 |
| 2016 | 401.89    | 5.8   | 11000.0  | 9630    | 5810.00 |
| 2017 | 402.68    | 4.9   | 11000.0  | 9550    | 5480.00 |

# APPENDIX V Stanrock Un-named Pond Report

#### Table 1. Surface Water Quality Results at DSP, 2015-2017

| Month                           | COND (µmho/cm) | Hardness (mg/L) | pН      | SO4 (mg/L)       | TSS (mg/L) | Ra (Bq/L) | AI (mg/L)          | Co (mg/L) | Fe (mg/L) | Mn (mg/L) | U (mg/L)           |
|---------------------------------|----------------|-----------------|---------|------------------|------------|-----------|--------------------|-----------|-----------|-----------|--------------------|
| 2015.06                         | 520            | 204             | 3.7     | 250              |            | 0.017     |                    | 0.0478    | 0.52      | 4.81      | 0.0001             |
| 2015.07                         | 584            | 240             | 3.7     | 260              | 2          | 0.025     | 5.31               | 0.0588    | 0.4       | 5.26      | 0.0002             |
| 2015.09                         | 505            |                 | 3.8     | 290              | 1          |           | 4.92               | 0.0512    | 0.31      | 5.29      | <0.0005            |
| 2015.12                         | 43             | 19              | 4.3     | 24               | 9          |           | 0.79               | 0.0068    | 0.32      | 0.409     | <0.0005            |
| 2016.03                         | 288.6          | 166             | 4.2     | 190              | 1          |           | 3.27               | 0.0329    | 0.75      | 3.4       | <0.0005            |
| 2016.06                         | 594            | 259             | 3.8     | 290              | 1          |           | 5.94               | 0.0528    | 0.43      | 4.89      | <0.0005            |
| 2016.09                         | 601            | 285             | 3.7     | 350              | 2          |           | 5.44               | 0.0531    | 0.34      | 5.67      | <0.0005            |
| 2017.06                         | 562            | 256             | 3.8     | 280              | 2          |           | 6.48               | 0.0539    | 0.47      | 5.58      | <0.0005            |
| 2017.09                         | 96.1           | 248             | 3.7     | 280              | 1          |           | 5.88               | 0.055     | 0.6       | 4.91      | <0.0005            |
|                                 |                |                 |         |                  |            |           |                    |           |           |           |                    |
| PWQO/IPWQO <sup>1</sup>         |                |                 | 6.5-8.5 |                  |            | 1         | 0.015 <sup>A</sup> | 0.0009    | 0.3       |           | 0.005 <sup>B</sup> |
| WQG <sup>2</sup>                |                |                 | 6.5     | 429 <sup>c</sup> |            | 1         |                    | 0.0025    | 0.3       | 0.8       | 0.015              |
| CCME <sup>3</sup>               |                |                 | 6.5-9.0 |                  | *          |           | 0.005 <sup>D</sup> |           | 0.3       |           | 0.015              |
|                                 |                |                 |         |                  |            |           |                    |           |           |           |                    |
| Lake Background <sup>4</sup>    |                |                 | 6.6     | 6.4              |            | 0.008     |                    |           | 0.49      | 0.099     | <0.0005            |
| Wetland Background <sup>5</sup> |                |                 | 5.2     | 4.4              |            | 0.006     |                    |           | 1.69      | 0.067     | < 0.0005           |
|                                 |                |                 |         |                  |            |           |                    |           |           |           |                    |
| Count                           | 10             | 9               | 10      | 9                | 9          | 2         | 9                  | 9         | 9         | 9         | 9                  |
| High                            | 601            | 285             | 4.3     | 350              | 9          | 0.025     | 6.48               | 0.0588    | 0.75      | 5.67      | < 0.0005           |
| Low                             | 43             | 19              | 3.7     | 24               | 1          | 0.017     | 0.79               | 0.0068    | 0.31      | 0.409     | 0.0001             |
| Mean                            | 421.5          | 209.6           | 3.9     | 246              | 2          | 0.021     | 4.75               | 0.0458    | 0.46      | 4.469     | 0.0004             |

<sup>1</sup>Provincial Water Quality Objectives (PWQO) and Interim Provincial Water Quality Objectives (IPWQO) (MOE 1994, 1999)

<sup>2</sup>Most recent Ontario, British Columbia, or federal water quality guidelines for the protection of aquatic life (Minnow, 2016)

<sup>3</sup>Canadian Council of Ministers of the Environment Water Quality Guidelines for the Protection of Aquatic Life (CCME)

<sup>4</sup>Upper limit of background concentration based on data collected from lake reference stations in the SRWMP (D-4, SR-18, SR-19) between 2003-2013 (Minnow, 2016)

<sup>5</sup>Upper limit of background concentration based on data collected from wetland reference stations in the SRWMP (SR-16, SR-17) between 2003-2013 (Minnow, 2016)

<sup>A</sup>At pH 4.5 to 5.5 IPWQO is 0.015 mg/L based on inorganic monomeric aluminum measured in clay-free samples

<sup>B</sup>IPWQO for U set to meet emergency needs & is applied with due caution

<sup>C</sup>WQG for sulphate is hardness dependent

<sup>D</sup>CCME WQG for AI when pH is <6.5

\*CCME WQG is maximum average increase of 5 mg/L from background levels for longterm exposure (for example inputs lasting between 24 hours and 30 days)

Shaded: indicates concentration exceeds the PWQO/IPWQO

Bolded: indicates concentration exceeds WQG limits

Red: indicates concentration exceeds CCME limits

#### Table 2. Surface Water Quality Results at DSP-2, 2015-2017

| Month                           | COND (µmho/cm) | FLOWL/s | Hardness (mg/L) | pН      | SO4 (mg/L)       | TSS (mg/L) | Ra (Bq/L) | AI (mg/L)          | Co (mg/L) | Fe (mg/L) | Mn (mg/L) | U (mg/L)           |
|---------------------------------|----------------|---------|-----------------|---------|------------------|------------|-----------|--------------------|-----------|-----------|-----------|--------------------|
| 2015.07                         | 470            | <1.00   | 206             | 4       | 230              | 1          | 0.033     |                    | 0.0713    | 15.7      | 6.71      | 0.0001             |
| 2015.08                         | 466            | <1.00   | 220             | 4.5     | 260              | 19         | 0.026     | 0.87               | 0.0713    | 15.7      | 6.71      | 0.0001             |
| 2015.09                         | 491            | <1.00   |                 | 4.5     | 280              | 2          | 0.037     | 0.71               | 0.0633    | 10.8      | 6.26      | < 0.0005           |
| 2015.10                         | 484            | <1.00   | 187             | 4.6     | 280              | 1          | 0.031     | 0.56               | 0.0454    | 8.33      | 4.43      | < 0.0005           |
| 2015.11                         | 227.9          | <1.00   | 128             | 4.3     | 140              | <1         | 0.03      | 0.92               | 0.0209    | 0.41      | 2.74      | <0.0005            |
| 2015.12                         | 199.7          | <1.00   | 142             | 4.4     | 150              | 1          | 0.018     | 0.96               | 0.0214    | 0.71      | 2.94      | < 0.0005           |
| 2016.01                         | 213.7          | <1.00   | 144             | 4.8     | 160              | <1         | 0.025     | 0.88               | 0.0262    | 1.08      | 3.13      | <0.0005            |
| 2016.02                         | 395.9          | <1.00   | 161             | 4.4     | 180              | 1          | 0.017     | 1.04               | 0.0276    | 1.37      | 3.37      | < 0.0005           |
| 2016.03                         | 285            | <1.00   | 174             | 4.2     | 180              | 2          | 0.016     | 1.11               | 0.0281    | 1.55      | 3.48      | < 0.0005           |
| 2016.04                         | 164.4          | <1.00   | 103             | 4.9     | 110              | 1          |           | 0.97               | 0.0144    | 0.25      | 1.92      | < 0.0005           |
| 2016.05                         | 317.6          | <1.00   | 168             | 4.4     | 190              | <1         | 0.027     | 1.44               | 0.037     | 0.61      | 3.55      | < 0.0005           |
| 2016.06                         | 492            | <1.00   | 253             | 3.9     | 270              | 1          | 0.031     | 2.25               | 0.0501    | 1.24      | 4.99      | < 0.0005           |
| 2016.07                         | 542            | <1.00   | 247             | 4.2     | 300              | 2          | 0.025     | 1.88               | 0.0558    | 4.3       | 5.98      | < 0.0005           |
| 2016.08                         | 556            | <1.00   | 267             | 3.7     | 304              | 3          | 0.033     | 0.94               | 0.0659    | 6.35      | 6.26      | < 0.0005           |
| 2016.09                         | 561            | <1.00   | 278             | 3.9     | 330              | 4          | 0.031     | 0.37               | 0.0489    | 9.67      | 5.71      | < 0.0005           |
| 2016.10                         | 524            | <1.00   | 260             | 4.4     | 300              | 3          | 0.047     | 0.54               | 0.0391    | 4.98      | 5.85      | < 0.0005           |
| 2016.11                         | 405.2          | <1.00   | 240             | 4.4     | 250              | 4          | 0.042     | 0.55               | 0.037     | 2.39      | 5.04      | < 0.0005           |
| 2017.05                         | 406.2          | <1.00   | 240             | 4.2     | 240              | <1         | 0.023     | 3.62               | 0.0445    | 0.33      | 4.72      | < 0.0005           |
| 2017.06                         | 485            | <1.00   | 261             | 4       | 270              | <1         | 0.043     | 3.57               | 0.0553    | 0.59      | 6.63      | < 0.0005           |
| 2017.07                         | 522            | <1.00   | 258             | 3.8     | 270              | <1         | 0.03      |                    | 0.0724    | 1.08      | 6.29      | < 0.0005           |
| 2017.08                         | 568            | <1.00   | 240             | 3.6     | 270              | <1         | 0.037     | 2.5                | 0.0907    | 1.43      | 6.93      | < 0.0005           |
| 2017.09                         | 538            | <1.00   | 264             | 3.6     | 270              | <1         | 0.037     | 2.94               | 0.142     | 0.83      | 9.37      | < 0.0005           |
| 2017.10                         | 529            | <1.00   | 211             | 3.6     | 220              | <1         | 0.024     | 2.17               | 0.0773    | 0.65      | 6.09      | < 0.0005           |
| 2017.11                         | 498            |         | 183             | 3.8     | 190              | 1          |           | 1.71               | 0.0414    | 0.7       | 4.11      | < 0.0005           |
|                                 |                |         |                 |         |                  |            |           |                    |           |           |           |                    |
| PWQO/IPWQO <sup>1</sup>         |                |         |                 | 6.5-8.5 |                  |            | 1         | 0.015 <sup>A</sup> | 0.0009    | 0.3       |           | 0.005 <sup>B</sup> |
| WQG <sup>2</sup>                |                |         |                 | 6.5     | 429 <sup>C</sup> |            | 1         |                    | 0.0025    | 0.3       | 0.8       | 0.015              |
| CCME <sup>3</sup>               |                |         |                 | 6.5-9.0 |                  | *          |           | 0.005 <sup>D</sup> |           | 0.3       |           | 0.015              |
|                                 |                |         |                 |         |                  |            |           |                    |           |           |           |                    |
| Lake Background <sup>4</sup>    |                |         |                 | 6.6     | 6.4              |            | 0.008     |                    |           | 0.49      | 0.099     | < 0.0005           |
| Wetland Background <sup>5</sup> |                |         |                 | 5.2     | 4.4              |            | 0.006     |                    |           | 1.69      | 0.067     | <0.0005            |
|                                 |                |         |                 |         |                  |            |           |                    |           |           |           |                    |
| Count                           | 25             | 25      | 24              | 25      | 24               | 24         | 24        | 24                 | 24        | 24        | 24        | 24                 |
| High                            | 568            | <1.00   | 278             | 4.9     | 330              | 19         | 0.047     | 3.62               | 0.142     | 15.7      | 9.37      | <0.0005            |
| Low                             | 164.4          | <1.00   | 103             | 3.6     | 110              | <1         | 0.016     | 0.37               | 0.0144    | 0.25      | 1.92      | 0.0001             |
| Mean                            | 430.9          | 1       | 210.2           | 4.2     | 235.2            | 2          | 0.03      | 1.48               | 0.052     | 3.79      | 5.134     | 0.0005             |

<sup>1</sup>Provincial Water Quality Objectives (PWQO) and Interim Provincial Water Quality Objectives (IPWQO) (MOE 1994, 1999)

<sup>2</sup>Most recent Ontario, British Columbia, or federal water quality guidelines for the protection of aquatic life (Minnow, 2016)

<sup>3</sup>Canadian Council of Ministers of the Environment Water Quality Guidelines for the Protection of Aquatic Life (CCME)

<sup>4</sup>Upper limit of background concentration based on data collected from lake reference stations in the SRWMP (D-4, SR-18, SR-19) between 2003-2013 (Minnow, 2016)

<sup>5</sup>Upper limit of background concentration based on data collected from wetland reference stations in the SRWMP (SR-16, SR-17) between 2003-2013 (Minnow, 2016)

<sup>A</sup>At pH 4.5 to 5.5 IPWQO is 0.015 mg/L based on inorganic monomeric aluminum measured in clay-free samples

<sup>B</sup>IPWQO for U set to meet emergency needs & is applied with due caution

<sup>C</sup>WQG for sulphate is hardness dependent

<sup>D</sup>CCME WQG for AI when pH is <6.5

\*CCME WQG is maximum average increase of 5 mg/L from background levels for longterm exposure (for example inputs lasting between 24 hours and 30 days)

Shaded: indicates concentration exceeds the PWQO/IPWQO

Bolded: indicates concentration exceeds WQG limits

Red: indicates concentration exceeds CCME limits

#### Table 3. Surface Water Quality Results at DSP-3, 2015-2017

| Month                           | COND (µmho/cm) | Hardness (mg/L) | pН      | SO4 (mg/L)       | TSS (mg/L) | Ra (Bq/L) | AI (mg/L)          | Co (mg/L) | Fe (mg/L) | Mn (mg/L) | U (mg/L)           |
|---------------------------------|----------------|-----------------|---------|------------------|------------|-----------|--------------------|-----------|-----------|-----------|--------------------|
| 2015.08                         | 113.8          | 44.2            | 6.9     | 34               | <1         | 0.023     |                    | 0         | 0.01      | 0.004     | 0.0013             |
| 2015.09                         | 101.6          |                 | 7.1     | 36               | <1         |           | 0.02               | <0.0005   | <0.02     | 0.004     | 0.0011             |
| 2015.12                         | 66.1           | 45.3            | 6.9     | 37               | <1         |           | 0.02               | <0.0005   | 0.25      | 0.009     | 0.0014             |
| 2016.03                         | 78             | 45.2            | 6.7     | 33               | <1         |           | 0.03               | <0.0005   | 0.04      | 0.008     | 0.0012             |
| 2016.06                         | 102.3          | 44.9            | 6.9     | 33               | 1          |           | 0.01               | <0.0005   | <0.02     | 0.011     | 0.0014             |
| 2016.09                         | 97.9           | 42.3            | 6.9     | 34               | <1         |           | 0                  | <0.0005   | <0.02     | 0.003     | 0.0012             |
| 2017.06                         | 94.3           | 41.1            | 7       | 30               | 1          |           | 0.01               | <0.0005   | 0.02      | 0.008     | 0.0014             |
| 2017.09                         | 591            | 45.8            | 6.9     | 32               | <1         |           | 0.01               | <0.0005   | 0.03      | 0.007     | 0.0012             |
|                                 |                |                 |         |                  |            |           |                    |           |           |           |                    |
| PWQO/IPWQO <sup>1</sup>         |                |                 | 6.5-8.5 |                  |            | 1         | 0.075 <sup>E</sup> | 0.0009    | 0.3       |           | 0.005 <sup>B</sup> |
| WQG <sup>2</sup>                |                |                 | 6.5     | 128 <sup>C</sup> |            | 1         |                    | 0.0025    | 0.3       | 0.8       | 0.015              |
| CCME <sup>3</sup>               |                |                 | 6.5-9.0 |                  | *          |           | 0.1 <sup>D</sup>   |           | 0.3       |           | 0.015              |
|                                 |                |                 |         |                  |            |           |                    |           |           |           |                    |
| Lake Background <sup>4</sup>    |                |                 | 6.6     | 6.4              |            | 0.008     |                    |           | 0.49      | 0.099     | <0.0005            |
| Wetland Background <sup>5</sup> |                |                 | 5.2     | 4.4              |            | 0.006     |                    |           | 1.69      | 0.067     | <0.0005            |
|                                 |                |                 |         |                  |            |           |                    |           |           |           |                    |
| Count                           | 9              | 8               | 9       | 8                | 8          | 1         | 8                  | 8         | 8         | 8         | 8                  |
| High                            | 591            | 45.8            | 7.1     | 37               | 1          | 0.023     | 0.03               | <0.0005   | 0.25      | 0.011     | 0.0014             |
| Low                             | 66.1           | 41.1            | 6.7     | 30               | <1         | 0.023     | 0                  | 0         | 0.01      | 0.003     | 0.0011             |
| Mean                            | 155.6          | 44.1            | 6.9     | 33.6             | 1          | 0.023     | 0.02               | 0.0004    | 0.05      | 0.007     | 0.0013             |

<sup>1</sup>Provincial Water Quality Objectives (PWQO) and Interim Provincial Water Quality Objectives (IPWQO) (MOE 1994, 1999)

<sup>2</sup>Most recent Ontario, British Columbia, or federal water quality guidelines for the protection of aquatic life (Minnow, 2016)

<sup>3</sup>Canadian Council of Ministers of the Environment Water Quality Guidelines for the Protection of Aquatic Life (CCME)

<sup>4</sup>Upper limit of background concentration based on data collected from lake reference stations in the SRWMP (D-4, SR-18, SR-19) between 2003-2013 (Minnow, 2016)

<sup>5</sup>Upper limit of background concentration based on data collected from wetland reference stations in the SRWMP (SR-16, SR-17) between 2003-2013 (Minnow, 2016)

<sup>B</sup>IPWQO for U set to meet emergency needs & is applied with due caution

<sup>C</sup>WQG for sulphate is hardness dependent

<sup>D</sup>CCME WQG for Al when pH is ≥6.5

<sup>E</sup>At pH >6.5 to 9.0, the IPWQO is 0.075 mg/L based on total aluminum measured in clay-free samples

\*CCME WQG is maximum average increase of 5 mg/L from background levels for longterm exposure (for example inputs lasting between 24 hours and 30 days)

Shaded: indicates concentration exceeds the PWQO/IPWQO

Bolded: indicates concentration exceeds WQG limits

Red: indicates concentration exceeds CCME limits